903 resultados para cloud computing accountability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the Next Generation Networks, especially the wireless broadband access technologies such as Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX), have increased the number of "all-IP" networks across the world. The enhanced capabilities of these access networks has spearheaded the cloud computing paradigm, where the end-users aim at having the services accessible anytime and anywhere. The services availability is also related with the end-user device, where one of the major constraints is the battery lifetime. Therefore, it is necessary to assess and minimize the energy consumed by the end-user devices, given its significance for the user perceived quality of the cloud computing services. In this paper, an empirical methodology to measure network interfaces energy consumption is proposed. By employing this methodology, an experimental evaluation of energy consumption in three different cloud computing access scenarios (including WiMAX) were performed. The empirical results obtained show the impact of accurate network interface states management and application network level design in the energy consumption. Additionally, the achieved outcomes can be used in further software-based models to optimized energy consumption, and increase the Quality of Experience (QoE) perceived by the end-users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing is a new development that is based on the premise that data and applications are stored centrally and can be accessed through the Internet. Thisarticle sets up a broad analysis of how the emergence of clouds relates to European competition law, network regulation and electronic commerce regulation, which we relate to challenges for the further development of cloud services in Europe: interoperability and data portability between clouds; issues relating to vertical integration between clouds and Internet Service Providers; and potential problems for clouds to operate on the European Internal Market. We find that these issues are not adequately addressed across the legal frameworks that we analyse, and argue for further research into how to better facilitate innovative convergent services such as cloud computing through European policy – especially in light of the ambitious digital agenda that the European Commission has set out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying location-focused data protection law within the context of a location-agnostic cloud computing framework is fraught with difficulties. While the Proposed EU Data Protection Regulation has introduced a lot of changes to the current data protection framework, the complexities of data processing in the cloud involve various layers and intermediaries of actors that have not been properly addressed. This leaves some gaps in the regulation when analyzed in cloud scenarios. This paper gives a brief overview of the relevant provisions of the regulation that will have an impact on cloud transactions and addresses the missing links. It is hoped that these loopholes will be reconsidered before the final version of the law is passed in order to avoid unintended consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el campo de la biomedicina se genera una inmensa cantidad de imágenes diariamente. Para administrarlas es necesaria la creación de sistemas informáticos robustos y ágiles, que necesitan gran cantidad de recursos computacionales. El presente artículo presenta un servicio de cloud computing capaz de manejar grandes colecciones de imágenes biomédicas. Gracias a este servicio organizaciones y usuarios podrían administrar sus imágenes biomédicas sin necesidad de poseer grandes recursos informáticos. El servicio usa un sistema distribuido multi agente donde las imágenes son procesadas y se extraen y almacenan en una estructura de datos las regiones que contiene junto con sus características. Una característica novedosa del sistema es que una misma imagen puede ser dividida, y las sub-imágenes resultantes pueden ser almacenadas por separado por distintos agentes. Esta característica ayuda a mejorar el rendimiento del sistema a la hora de buscar y recuperar las imágenes almacenadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of cloud computing is extending to all kind of systems, including the ones that are part of Critical Infrastructures, and measuring the reliability is becoming more difficult. Computing is becoming the 5th utility, in part thanks to the use of cloud services. Cloud computing is used now by all types of systems and organizations, including critical infrastructure, creating hidden inter-dependencies on both public and private cloud models. This paper investigates the use of cloud computing by critical infrastructure systems, the reliability and continuity of services risks associated with their use by critical systems. Some examples are presented of their use by different critical industries, and even when the use of cloud computing by such systems is not widely extended, there is a future risk that this paper presents. The concepts of macro and micro dependability and the model we introduce are useful for inter-dependency definition and for analyzing the resilience of systems that depend on other systems, specifically in the cloud model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-user videoconferencing systems offer communication between more than two users, who are able to interact through their webcams, microphones and other components. The use of these systems has been increased recently due to, on the one hand, improvements in Internet access, networks of companies, universities and houses, whose available bandwidth has been increased whilst the delay in sending and receiving packets has decreased. On the other hand, the advent of Rich Internet Applications (RIA) means that a large part of web application logic and control has started to be implemented on the web browsers. This has allowed developers to create web applications with a level of complexity comparable to traditional desktop applications, running on top of the Operating Systems. More recently the use of Cloud Computing systems has improved application scalability and involves a reduction in the price of backend systems. This offers the possibility of implementing web services on the Internet with no need to spend a lot of money when deploying infrastructures and resources, both hardware and software. Nevertheless there are not many initiatives that aim to implement videoconferencing systems taking advantage of Cloud systems. This dissertation proposes a set of techniques, interfaces and algorithms for the implementation of videoconferencing systems in public and private Cloud Computing infrastructures. The mechanisms proposed here are based on the implementation of a basic videoconferencing system that runs on the web browser without any previous installation requirements. To this end, the development of this thesis starts from a RIA application with current technologies that allow users to access their webcams and microphones from the browser, and to send captured data through their Internet connections. Furthermore interfaces have been implemented to allow end users to participate in videoconferencing rooms that are managed in different Cloud provider servers. To do so this dissertation starts from the results obtained from the previous techniques and backend resources were implemented in the Cloud. A traditional videoconferencing service which was implemented in the department was modified to meet typical Cloud Computing infrastructure requirements. This allowed us to validate whether Cloud Computing public infrastructures are suitable for the traffic generated by this kind of system. This analysis focused on the network level and processing capacity and stability of the Cloud Computing systems. In order to improve this validation several other general considerations were taken in order to cover more cases, such as multimedia data processing in the Cloud, as research activity has increased in this area in recent years. The last stage of this dissertation is the design of a new methodology to implement these kinds of applications in hybrid clouds reducing the cost of videoconferencing systems. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this study, resulting in useful information from the different stages of the implementation of videoconferencing systems in Cloud Computing systems. RESUMEN Los sistemas de videoconferencia multiusuario permiten la comunicación entre más de dos usuarios que pueden interactuar a través de cámaras de video, micrófonos y otros elementos. En los últimos años el uso de estos sistemas se ha visto incrementado gracias, por un lado, a la mejora de las redes de acceso en las conexiones a Internet en empresas, universidades y viviendas, que han visto un aumento del ancho de banda disponible en dichas conexiones y una disminución en el retardo experimentado por los datos enviados y recibidos. Por otro lado también ayudó la aparación de las Aplicaciones Ricas de Internet (RIA) con las que gran parte de la lógica y del control de las aplicaciones web comenzó a ejecutarse en los mismos navegadores. Esto permitió a los desarrolladores la creación de aplicaciones web cuya complejidad podía compararse con la de las tradicionales aplicaciones de escritorio, ejecutadas directamente por los sistemas operativos. Más recientemente el uso de sistemas de Cloud Computing ha mejorado la escalabilidad y el abaratamiento de los costes para sistemas de backend, ofreciendo la posibilidad de implementar servicios Web en Internet sin la necesidad de grandes desembolsos iniciales en las áreas de infraestructuras y recursos tanto hardware como software. Sin embargo no existen aún muchas iniciativas con el objetivo de realizar sistemas de videoconferencia que aprovechen las ventajas del Cloud. Esta tesis doctoral propone un conjunto de técnicas, interfaces y algoritmos para la implentación de sistemas de videoconferencia en infraestructuras tanto públicas como privadas de Cloud Computing. Las técnicas propuestas en la tesis se basan en la realización de un servicio básico de videoconferencia que se ejecuta directamente en el navegador sin la necesidad de instalar ningún tipo de aplicación de escritorio. Para ello el desarrollo de esta tesis parte de una aplicación RIA con tecnologías que hoy en día permiten acceder a la cámara y al micrófono directamente desde el navegador, y enviar los datos que capturan a través de la conexión de Internet. Además se han implementado interfaces que permiten a usuarios finales la participación en salas de videoconferencia que se ejecutan en servidores de proveedores de Cloud. Para ello se partió de los resultados obtenidos en las técnicas anteriores de ejecución de aplicaciones en el navegador y se implementaron los recursos de backend en la nube. Además se modificó un servicio ya existente implementado en el departamento para adaptarlo a los requisitos típicos de las infraestructuras de Cloud Computing. Alcanzado este punto se procedió a analizar si las infraestructuras propias de los proveedores públicos de Cloud Computing podrían soportar el tráfico generado por los sistemas que se habían adaptado. Este análisis se centró tanto a nivel de red como a nivel de capacidad de procesamiento y estabilidad de los sistemas. Para los pasos de análisis y validación de los sistemas Cloud se tomaron consideraciones más generales para abarcar casos como el procesamiento de datos multimedia en la nube, campo en el que comienza a haber bastante investigación en los últimos años. Como último paso se ideó una metodología de implementación de este tipo de aplicaciones para que fuera posible abaratar los costes de los sistemas de videoconferencia haciendo uso de clouds híbridos. Finalmente en la tesis se abre una discusión sobre las conclusiones obtenidas a lo largo de este amplio estudio, obteniendo resultados útiles en las distintas etapas de implementación de los sistemas de videoconferencia en la nube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los continuos avances tecnológicos están trayendo consigo nuevas formas de almacenar, tratar y comunicar datos personales. Es necesario repensar el derecho fundamental a la protección de datos, y arbitrar mecanismos para adaptarlo a las nuevas formas de tratamiento. a nivel europeo se está trabajando en una nueva propuesta de regulación que consideramos, en general, muy apropiada para afrontar los nuevos retos en esta materia. para ejemplificar todo esto, en el presente estudio se plantea de forma detallada el caso de la computación en nube, sus principales características y algunas preocupaciones acerca de los riesgos potenciales que su utilización trae consigo. Abstract: Rapid technological developments are bringing new ways to store, process and communicate personal data. We need to rethink the fundamental right to data protection and adapt it to new forms of treatment. there is a new «european» proposal for a regulation on the protection of individuals with regard to the processing of personal data, well suited to meet the new challenges. this study offers one example of this: the cloud computing, its main characteristics and some concerns about the potential risks that its use entails.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present competitive environment, companies are wondering how to reduce their IT costs while increasing their efficiency and agility to react when changes in the business processes are required. Cloud Computing is the latest paradigm to optimize the use of IT resources considering ?everything as a service? and receiving these services from the Cloud (Internet) instead of owning and managing hardware and software assets. The benefits from the model are clear. However, there are also concerns and issues to be solved before Cloud Computing spreads across the different industries. This model will allow a pay-per-use model for the IT services and many benefits like cost savings, agility to react when business demands changes and simplicity because there will not be any infrastructure to operate and administrate. It will be comparable to the well known utilities like electricity, water or gas companies. However, this paper underlines several risk factors of the model. Leading technology companies should research on solutions to minimize the risks described in this article. Keywords - Cloud Computing, Utility Computing, Elastic Computing, Enterprise Agility