955 resultados para classical rational theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, pterosaur skull constructions were analysed using a combined approach of finite element analysis (FEA), static investigations as well as applying classical beam theory and lever mechanics. The study concentrates on the operating regime „bite“, where loads are distributed via the dentition or a keratinous rhamphotheca into the skull during jaw occlusion. As a first step, pterosaur tooth constructions were analysed. The different morphologies of the tooth construction determine specific operational ranges, in which the teeth perform best (= greatest resistance against failure). The incomplete enamel-covering of the pterosaur tooth constructions thereby leads to a reduction of strain and stress and to a greater lateral elasticity than for a complete enamel cover. This permits the development of high and lateral compressed tooth constructions. Further stress-absorption occurs in the periodontal membrane, although its mechanical properties can not be clarified unambiguously. A three-dimensionally preserved skull of Anhanguera was chosen as a case-study for the investigation of the skull constructions. CT-scans were made to get information about the internal architecture, supplemented by thin-sections of a rostrum of a second Anhanguera specimen. These showed that the rostrum can be approximated as a double-walled triangular tube with a large central vacuity and an average wall-thickness of the bony layers of about 1 mm. On base of the CT-scans, a stereolithography of the skull of Anhanguera was made on which the jaw adductor and abductor muscles were modelled, permitting to determine muscular forces. The values were used for the lever mechanics, cantilever and space frame analysis. These studies and the FEA show, that the jaw reaction forces are critical for the stability of the skull construction. The large jugal area ventral to the orbita and the inclined occipital region act as buttresses against these loads. In contrast to the orbitotemporal region which is subject to varying loading conditions, the pattern in the rostrum is less complex. Here, mainly bending in dorsal direction and torsion occur. The hollow rostrum leads to a reduction of weight of the skull and to a high bending and torsional resistance. Similar to the Anhanguera skull construction, the skulls of those pterosaur taxa were analysed, from which enough skull material is know to permit a reliable reconstruction. Furthermore, FEA were made from five selected taxa. The comparison of the biomechanical behaviour of the different skull constructions results in major transformational processes: elongation of rostra, inclination of the occipital region, variation of tooth morphology, reduction of the dentition and replacement of teeth by a keratinous hook or rhamphotheca, fusion of naris and antorbital fenestra, and the development of bony and soft-tissue crests. These processes are discussed for their biomechanical effects during bite. Certain optional operational ranges for feeding are assigned to the different skull constructions and previous hypotheses (e.g. skimming) are verified. Using the principle of economisation, these processes help to establish irreversible transformations and to define possible evolutionary pathways. The resulting constructional levels and the structural variations within these levels are interpreted in light of a greater feeding efficiency and reduction of bony mass combined with an increased stability against the various loads. The biomechanical conclusive pathways are used for comparison and verification of recent hypothesis of the phylogenetic systematics of pterosaurs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Arbeit beschäftigt sich mit ein- und zweikomponentigen, geladenen Kolloidsystemen, die in vollentsalzten wässrigen und organischen Dispersionen kristalline Strukturen ausbilden. Im ersten Teil der Arbeit wird die Wechselwirkung der Kolloide mit verschiedenen Methoden charakterisiert. Dabei zeigten sich quantitative Übereinstimmungen zwischen den Resultaten aus Zellenmodellrechnungen und aus elektrokinetischen Messungen einerseits und Messungen des Phasenverhaltens und der Elastizität andererseits. Diese nunmehr gut gesicherten Diskrepanzen und Korrelationen bedürfen des theoretischen Verständnisses. Im zweiten Teil der Arbeit wurde das Erstarrungsverhalten kolloidaler Scherschmelzen in den kristallinen Zustand mit (zeitaufgelöster) statischer Lichtstreuung und mikroskopischen Methoden untersucht. Dies erlaubte zunächst die kritische Überprüfung klassischer Modelle zur Kristallisationskinetik (Wilson- Frenkel- Gesetz, klassische Nukleationstheorie, Kolmogorov- Johnson- Mehl- Avrami (KJMA)- Modell). Es zeigte sich, dass diese Modelle gut geeignet sind die Verfestigung auch geladener kolloidaler Schmelzen zu beschreiben, wenn die diffusive Einteilchendynamik korrekt berücksichtigt wird. Erstmals wurden Oberflächenspannungen zwischen Kristallkeim und Schmelze für geladene Systeme bestimmt, die im Gegensatz zu Hartkugel- Systemen eine lineare Zunahme mit der Partikelkonzentration aufweisen. Der Methodenpark und die Auswerteverfahren wurden sodann auf binäre kolloidale Mischungen übertragen. Entsprechend den Einzelkomponenten kristallisieren alle Mischungen in einer kubischen Struktur. Leitfähigkeitsmessungen und Elastizität stehen meist im Einklang mit der Nukleation zufallsgeordneter Substitutionskristalle. Für mehrere Proben mit unterschiedlichen Größenverhältnissen wurde mit statischer Lichtstreuung der Einfluss der Komposition und der Partikelkonzentration auf das Nukleationsverhalten untersucht. Im Allgemeinen wurde das Nukleationsszenario einkomponentiger Systeme mit einigen unerwarteten, quantitativen Unterschieden reproduziert. Für eine Probe, die eine Kompositionsordnung andeutet, wurden interessante Korrelationen zwischen der Nukleationskinetik und den Eigenschaften des resultierenden Festkörpers gefunden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt den fluid-kristallinen Phasenübergang sowie den Glasübergang anhand von kolloidalen Hart-Kugel(HK)-Modellsystemen. Die Untersuchungen erfolgen dabei im Wesentlichen mit unterschiedlichen Lichtstreumethoden und daher im reziproken Raum. rnDie Analyse der Kristallisationskinetik zeigt, dass es bei der Kristallisation zu signifikanten Abweichungen vom Bild der klassischen Nukleationstheorie (CNT) kommt. Diese geht von einem einstufigen Nukleationsprozess aus, wohingegen bei den hier durchgeführten Experimenten ein mehrstufiger Prozess beobachtet wird. Vor der eigentlichen Kristallisation kommt es zunächst zur Nukleation einer metastabilen Zwischenphase, sogenannter Precursor. In einer zweiten Stufe erfolgt innerhalb der Precursor die eigentliche Nukleation der Kristallite. rnDurch weitere Analyse und den Vergleich des Kristallisations- und Verglasungsszenarios konnte das Konzept der Precursornukleation auf den Vorgang der Verglasung erweitert werden. Während die Kristallnukleation oberhalb des Glasübergangspunktes zum Erliegen kommt, bleibt der Prozess der Precursornukleation auch bei verglasenden Proben erhalten. Ein Glas erstarrt somit in einem amorphen Zustand mit lokalen Precursorstrukturen. Die Korrelation der gemessenen zeitlichen Entwicklung der strukturellen sowie der dynamischen Eigenschaften zeigt darüber hinaus, dass das bisher unverstandene Ageing-Phänomen von HK-Gläsern mit der Nukleation von Precursorn zusammenhängt.rnEin solches mehrstufiges Szenario wurde bereits in früheren Veröffentlichungen beobachtet. Die im Rahmen dieser Arbeit durchgeführten Messungen ermöglichten erstmals die Bestimmung von Kristallnukleationsratendichten (Kristall-NRD) und Ratendichten für die Precursornukleation bis über den Glasübergangspunkt hinaus. Die Kristall-NRD bestätigen die Resultate aus anderen experimentellen Arbeiten. Die weiteren Analysen der Kristall-NRD belegen, dass die fluid-kristalline Grenzflächenspannung bei der Nukleation entgegen den Annahmen der CNT nicht konstant ist, sondern mit ansteigendem Volumenbruch linear zunimmt. Die Erweiterung der CNT um eine linear zunehmende Grenzflächenspannung ermöglichte eine quantitative Beschreibung der gemessenen Kristall- sowie der Precursor-NRD, was den Schluss zulässt, dass es sich in beiden Fällen um einen Boltzmann-aktivierten Prozess handelt. rnUm die beobachteten Abweichungen des Nukleationsprozesses vom Bild der CNT näher zu untersuchen, wurden die kollektiven Partikeldynamiken in stabilen Fluiden und metastabilen Schmelzen analysiert. Im klassischen Bild wird angenommen, dass die kollektive Partikeldynamik beim Vorgang der Nukleation keine Rolle spielt. Anhand der Resultate zeigen sich Abweichungen in der Dynamik stabiler Fluide und metastabiler Schmelzen. Während die kollektive Partikeldynamik in der stabilen Schmelze von der Struktur entkoppelt ist, tritt oberhalb des Phasenübergangspunktes eine Kopplung von Struktur und Dynamik auf. Dabei treten die Abweichungen zunächst in der Umgebung des ersten Strukturfaktormaximums und somit bei den am stärksten besetzten Moden auf. Mit steigender Unterkühlung nehmen die Anzahl der abweichenden Moden sowie die Stärke der Abweichungen zu. Dieses Phänomen könnte einen signifikanten Einfluss auf den Nukleationsprozess und somit auf die Kristallisationskinetik haben. Die Analyse der Dynamik im stabilen Fluid zeigt darüber hinaus Hinweise auf eine Singularität bei Annäherung an den fluid-kristallinen Phasenübergangspunkt.rnDes Weiteren wurden im Rahmen der vorliegenden Arbeit erstmals Ratendichten für die heterogene Nukleation eines HK-Systems an einer flachen Wand mittels statischer Lichtstreuung (SLS) bestimmt. Die Ergebnisse der Messung zeigen, dass die Nukleationsbarriere der heterogenen Nukleation annähernd Null ist und folglich eine vollständige Benetzung der Wand mit einer kristallinen Monolage vorliegt. Die Erweiterung der Untersuchungen auf gekrümmte Oberflächen in Form von sphärischen Partikeln (Seeds) stellt die erste experimentelle Arbeit dar, die den Einfluss eines Ensembles von Seeds auf die Kristallisationskinetik in HK-Systemen untersucht. Die Kristallisationskinetik und die Mikrostruktur werden abhängig von Größe und Anzahldichte der Seed-Partikel signifikant beeinflusst. In Übereinstimmung mit konfokalmikroskopischen Experimenten und Simulationen spielt dabei das Radienverhältnis der Majoritäts- zur Minoritätskomponente eine entscheidende Rolle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A crystal nucleus in a finite volume may exhibit phase coexistence with a surrounding fluid. The thermodynamic properties of the coexisting fluid (pressure and chemical potential) are enhanced relative to their coexistence values. This enhancement is uniquely related to the surface excess free energy. rnA model for weakly attractive soft colloidal particles is investigated, the so called Asakura-Oosawa model. In simulations, this model allows for the calculation of the pressure in the liquid using the virial formula directly. The phase coexistence pressure in the thermodynamic limit is obtained from the interface velocity method. We introduce a method by which the chemical potential in dense liquids can be measured. There is neither a need to locate the interface nor to compute the anisotropic interfacial tension to obtain nucleation barriers. Therefore, our analysis is appropriate for nuclei of arbitrary shape. Monte Carlo simulations over a wide range of nucleus volumes yield to nucleation barriers independent from the total system volume. The interfacial tension is determined via the ensemble-switch method, hence a detailed test of classical nucleation theory is possible. The anisotropy of the interfacial tension and the resulting non-spherical shape has only a minor effect on the barrier for the Asakura-Oosawa model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Students frequently hold a number of misconceptions related to temperature, heat and energy. There is not currently a concept inventory with sufficiently high internal reliability to assess these concept areas for research purposes. Consequently, there is little data on the prevalence of these misconceptions amongst undergraduate engineering students. PURPOSE (HYPOTHESIS) This work presents the Heat and Energy Concept Inventory (HECI) to assess prevalent misconceptions related to: (1) Temperature vs. Energy, (2) Temperature vs. Perceptions of Hot and Cold, (3) Factors that affect the Rate vs. Amount of Heat Transfer and (4) Thermal Radiation. The HECI is also used to document the prevalence of misconceptions amongst undergraduate engineering students. DESIGN/METHOD Item analysis, guided by classical test theory, was used to refine individual questions on the HECI. The HECI was used in a one group, pre-test-post-test design to assess the prevalence and persistence of targeted misconceptions amongst a population of undergraduate engineering students at diverse institutions. RESULTS Internal consistency reliability was assessed using Kuder-Richardson Formula 20; values were 0.85 for the entire instrument and ranged from 0.59 to 0.76 for the four subcategories of the HECI. Student performance on the HECI went from 49.2% to 54.5% after instruction. Gains on each of the individual subscales of the HECI, while generally statistically significant, were similarly modest. CONCLUSIONS The HECI provides sufficiently high estimates of internal consistency reliability to be used as a research tool to assess students' understanding of the targeted concepts. Use of the instrument demonstrates that student misconceptions are both prevalent and resistant to change through standard instruction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High flexural strength and stiffness can be achieved by forming a thin panel into a wave shape perpendicular to the bending direction. The use of corrugated shapes to gain flexural strength and stiffness is common in metal and reinforced plastic products. However, there is no commercial production of corrugated wood composite panels. This research focuses on the application of corrugated shapes to wood strand composite panels. Beam theory, classical plate theory and finite element models were used to analyze the bending behavior of corrugated panels. The most promising shallow corrugated panel configuration was identified based on structural performance and compatibility with construction practices. The corrugation profile selected has a wavelength equal to 8”, a channel depth equal to ¾”, a sidewall angle equal to 45 degrees and a panel thickness equal to 3/8”. 16”x16” panels were produced using random mats and 3-layer aligned mats with surface flakes parallel to the channels. Strong axis and weak axis bending tests were conducted. The test results indicate that flake orientation has little effect on the strong axis bending stiffness. The 3/8” thick random mat corrugated panels exhibit bending stiffness (400,000 lbs-in2/ft) and bending strength (3,000 in-lbs/ft) higher than 23/32” or 3/4” thick APA Rated Sturd-I-Floor with a 24” o.c. span rating. Shear and bearing test results show that the corrugated panel can withstand more than 50 psf of uniform load at 48” joist spacings. Molding trials on 16”x16” panels provided data for full size panel production. Full size 4’x8’ shallow corrugated panels were produced with only minor changes to the current oriented strandboard manufacturing process. Panel testing was done to simulate floor loading during construction, without a top underlayment layer, and during occupancy, with an underlayment over the panel to form a composite deck. Flexural tests were performed in single-span and two-span bending with line loads applied at mid-span. The average strong axis bending stiffness and bending strength of the full size corrugated panels (without the underlayment) were over 400,000 lbs-in2/ft and 3,000 in-lbs/ft, respectively. The composite deck system, which consisted of an OSB sheathing (15/32” thick) nailed-glued (using 3d ringshank nails and AFG-01 subfloor adhesive) to the corrugated subfloor achieved about 60% of the full composite stiffness resulting in about 3 times the bending stiffness of the corrugated subfloor (1,250,000 lbs-in2/ft). Based on the LRFD design criteria, the corrugated composite floor system can carry 40 psf of unfactored uniform loads, limited by the L/480 deflection limit state, at 48” joist spacings. Four 10-ft long composite T-beam specimens were built and tested for the composite action and the load sharing between a 24” wide corrugated deck system and the supporting I-joist. The average bending stiffness of the composite T-beam was 1.6 times higher than the bending stiffness of the I-joist. A 8-ft x 12-ft mock up floor was built to evaluate construction procedures. The assembly of the composite floor system is relatively simple. The corrugated composite floor system might be able to offset the cheaper labor costs of the single-layer Sturd-IFloor through the material savings. However, no conclusive result can be drawn, in terms of the construction costs, at this point without an in depth cost analysis of the two systems. The shallow corrugated composite floor system might be a potential alternative to the Sturd-I-Floor in the near future because of the excellent flexural stiffness provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2002, motivated largely by the uncontested belief that the private sector would operate more efficiently than the government, the government of Cameroon initiated a major effort to privatize some of Cameroon’s largest, state-run industries. One of the economic sectors affected by this privatization was tea production. In October 2002, the Cameroon Tea Estate (CTE), a privately owned, tea-cultivating organization, bought the Tole Tea Estate from the Cameroon Development Corporation (CDC), a government-owned entity. This led to an increase in the quantity of tea production; however, the government and CTE management appear not to have fully considered the risks of privatization. Using classical rhetorical theory, Richard Weaver’s conception of “god terms” (or “uncontested terms”), and John Ikerd’s ethical approach to risk communication, this study examines risks to which Tole Tea Estate workers were exposed and explores rhetorical strategies that workers employed in expressing their discontent. Sources for this study include online newspapers, which were selected on the basis of their reputation and popularity in Cameroon. Analysis of the data shows that, as a consequence of privatization, Tole Tea Estate workers were exposed to three basic risks: marginalization, unfulfilled promises, and poor working conditions. Workers’ reactions to these risks tended to grow more emotional as management appeared to ignore their demands. The study recommends that respect for labor law, constructive dialogue among stakeholders, and transparency might serve as guiding principles in responding to the politics of privatization in developing countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

eural Networks as Cybernetic Systems is a textbox that combines classical systems theory with artificial neural network technology. This third edition essentially compares with the 2nd one, but has been improved by correction of errors and by a rearrangement and minor expansion of the sections referring to recurrent networks. These changes hopefully allow for an easier comprehension of the essential aspects of this important domain that has received growing attention during the last years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the first-order corrected dynamics of fluid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order in the absence of external forces. Assuming linear response theory, we characterize the corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We subsequently find large classes of examples in gravity of this effective theory, by constructing stationary strained charged black brane solutions to first order in a derivative expansion. Using solution generating techniques and bent neutral black branes as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D-branes of type II string theory. By subsequently measuring the bending moment and the electric dipole moment which these geometries acquire due to the strain, we uncover that their form is captured by classical electroelasticity theory. In particular, we find that the Young modulus and the piezoelectric moduli of our strained charged black brane solutions are parameterized by a total of 4 response coefficients, both for the isotropic as well as anisotropic cases.