997 resultados para chromosome 19
Resumo:
Contents Sex pre-selection of bovine offsprings has commercial relevance for cattle breeders and several methods have been used for embryo sex determination. Polymerase chain reaction (PCR) has proven to be a reliable procedure for accomplishing embryo sexing. To date, most of the PCR-specific primers are derived from the few single-copy Y-chromosome-specific gene sequences already identified in bovines. Their detection demands higher amounts of embryonic genomic material or a nested amplification reaction. In order to circumvent this, limitation we searched for new male-specific sequences potentially useful in embryo sexing using random amplified polymorphic DNA (RAPD) analysis. Random amplified polymorphic DNA (RAPD) assay reproducibility problems can be overcome by its conversion into Sequence Characterized Amplified Region (SCAR) markers. In this work, we describe the identification of two bovine male-specific markers (OPC16(323) and OPF10(1168)) by means of RAPD. These markers were successfully converted into SCARs (OPC16(726) and OPF10(984)) using two pairs of specific primers.Furthermore, inverse PCR (iPCR) methodology was successfully applied to elongate OPC16(323) marker in 159% (from 323 to 837 bp). Both markers are shown to be highly conserved (similarity >= 95%) among bovine zebu and taurine cattle; OPC16(323) is also highly similar to a bubaline Y-chromosome-specific sequence. The primers derived from the two Y-chromosome-specific conserved sequences described in this article showed 100% accuracy when used for identifying male and female bovine genomic DNA, thereby proving their potential usefulness for bovine embryo sexing.
Resumo:
We present a 20-year follow-up on a patient with a ring chromosome 14. The ring chromosome was studied by fluorescence in-situ hybridization (FISH), multiplex-ligation probe amplification (MLPA), and genome wide SNP array, and no deletions of chromosome 14 were detected, although the telomeric repeat sequence was absent from the ring chromosome. The patient had skeletal abnormalities, and susceptibility to infections, as well as seizures and retinal pigmentation, which are commonly found in individuals with a ring 14. Our patient corroborates the idea that even when no genes are lost during ring formation, a complete ring chromosome can produce phenotypic alterations, which presumably result from ring instability or gene silencing due to the new chromosomal architecture. (C) 2010 Wiley-Liss, Inc.
Resumo:
Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31 CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) ""single nucleotide polymorphism""/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at 1436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. (C) 2011 Wiley-Liss, Inc.
Resumo:
Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth retardation in association with a typical small triangular face and other variable features. Genetic and epigenetic disturbances are detected in about 50% of the patients. Most frequently, SRS is caused by altered gene expression on chromosome 11p15 due to hypomethylation of the telomeric imprinting center (ICR1) that is present in at least 40% of the patients. Maternally inherited duplications encompassing ICR1 and ICR2 domains at 11p15 were found in a few patients, and a microduplication restricted to ICR2 was described in a single SRS child. We report on a microduplication of the ICR2 domain encompassing the KCNQ1, KCNQ1OT1, and CDKN1C genes in a three-generation family: there were four instances of paternal transmissions of the microduplication from a single male uniformly resulting in normal offspring, and five maternal transmissions, via two clinically normal sisters, with all the children exhibiting SRS. This report provides confirmatory evidence that a microduplication restricted to the ICR2 domain results in SRS when maternally transmitted. (C) 2011 Wiley-Liss, Inc.
Resumo:
Objective: Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder with an autosomal recessive pattern of inheritance. The gene for WS, WFS1, was identified on chromosome 4p16 and most WS patients carry mutations in this gene. However. some studies have provided evidence for genetic heterogeneity and the genotype-phenotype relationships are not clear. Our aim was to ascertain the spectrum of WFS1 mutations in Brazilian patients with WS and to examine the phenotype-genotype relationships in these patients. Design and methods: Clinical characterization and analyses of the WFS1. gene were performed in 27 Brazilian patients with WS from 19 families. Results: We identified 15 different mutations in the WFS1 gene in 26 patients, among which nine are novel. All mutations occurred in exon 8, except for one missense mutation which was located in exon 5. Although we did not find any clear phenotype-genotype relationship in patients with mutations in exon 8, the homozygous missense mutation in exon 5 was associated with a mild phenotype: onset of diabetes mellitus and optic atrophy during adulthood with good metabolic control being achieved with low doses of sulfonylurea Conclusions: Our data show that WFS1 is the major gene involved in WS in Brazilian patients and most mutations are concentrated in exon 8. Also, our study increases the spectrum of WFS1 mutations. Although no clear phenotype-genotype relationship was found for mutations in exon 8, a mild phenotype was associated with a homozygous missense mutation in exon 5.
Resumo:
We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC.
Resumo:
Background: Brazilian Quilombos are Afro-derived communities founded mainly by fugitive slaves between the 16(th) and 19(th) centuries; they can be recognized today by ancestral and cultural characteristics. Each of these remnant communities, however, has its own particular history, which includes the migration of non-African derived people. Methods: The present work presents a proposal for the origin of the male founder in Brazilian quilombos based on Y-haplogroup distribution. Y haplogroups, based on 16 binary markers (92R7, SRY2627, SRY4064, SRY10831.1 and .2, M2, M3, M09, M34, M60, M89, M213, M216, P2, P3 and YAP), were analysed for 98 DNA samples from genetically unrelated men from three rural Brazilian Afro-derived communities-Mocambo, Rio das Ras and Kalunga-in order to estimate male geographic origin. Results: Data indicated significant differences among these communities. A high frequency of non-African haplogroups was observed in all communities. Conclusions: This observation suggested an admixture process that has occurred over generations and directional mating between European males and African female slaves that must have occurred on farms before the slaves escaped. This means that the admixture occurred before the slaves escaped and the foundation of the quilombo.
Resumo:
To evaluate the meiotic spindle and chromosomal distribution of in vitro-matured oocytes from infertile nonobese women with PCOS and male or tubal causes of infertility (controls), and to compare in vitro maturation (IVM) rates between groups. Seventy four patients (26 with PCOS and 48 controls) undergoing stimulated cycles of oocyte retrieval for ICSI were selected prospectively. Thirteen PCOS patients and 27 controls had immature oocytes retrieved submitted to IVM. After IVM, oocytes showing extrusion of the first polar body were fixed and processed for evaluation of the meiotic spindle and chromosome distribution by immunofluorescence microscopy. There were no differences between PCOS and control groups with respect to IVM rates (50.0% and 42.9%, respectively) nor the percentage of meiotic abnormalities in metaphase II oocytes (35.3% and 25%, respectively). In vitro-matured oocytes obtained from stimulated cycles of nonobese PCOS did not have an increased ratio of meiotic abnormalities.
Resumo:
Myelodysplastic syndrome (MDS) is a rare hematological malignancy in children. It was performed FISH analysis in 19 pediatric MDS patients to investigate deletions involving the PPAR gamma and TP53 genes. Significant losses in the PPAR gamma gene and deletions in the tumor suppressor gene TP53 were observed in 17 and 18 cases, respectively. Using quantitative RT-PCR, it was detected PPAR gamma transcript downexpression in a subset of these cases. G-banding analysis revealed 17p deletions in a small number of these cases. One MDS therapy-related patient had neither a loss of PPAR gamma nor TP53. These data suggest that the PPAR gamma and TP53 genes may be candidates for molecular markers in pediatric MDS, and that these potentially recurrent deletions could contribute to the identification of therapeutic approaches in primary pediatric MDS. (C) 2008 Elsevier Ltd. All fights reserved.
Resumo:
Cytogenetic information of non-ossifying fibromas (NOFs) is exceptionally limited. This fact relies, in part, on their benign nature but mainly because most cases evolve undetected or there is no need for surgical intervention. We report the case of a NOF arising in the left tibia of a 14-year-old male with an invariable clonal translocation. The karyotype was denoted as 42-46,XY,t(11;3;14)(q23;p21;p11). There are only two previous reported cases of clonally aberrant NOF. Records from additional cases will be essential to assess whether consistent karyotypic aberrations define this lesion. Pediatr Blood Cancer 2010;54:764 767. (C) 2010 Wiley-Liss, Inc.
Resumo:
Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.
Resumo:
Polymicrogyria (PMG) is characterized by an excessive number of small and prominent brain gyri, separated by shallow sulci. Bilateral perisylvian polymicrogyria (BPP) is the most common form of PMG. Clinical signs include pseudobulbar paresis, mental retardation, and epilepsy. Familial forms of BPP have been described and a candidate locus was previously mapped to chromosome Xq28, distal do marker DXS8103. The objective of this study was to perform linkage analysis in one family segregating BPP. A total of 15 individuals, including 8 affected patients with BPP were evaluated. Family members were examined by a neurologist and subjected to magnetic resonance imaging scans. Individuals were genotyped for 18 microsatellite markers, flanking a 42.3 cM interval on ch Xq27-q28. Two-point and multipoint linkage analysis was performed using the LINKAGE package and haplotype reconstruction was performed by GENEHUNTER software. Our results showed a wide spectrum of clinical manifestations in affected individuals with BPP, ranging from normal to mild neurological abnormalities. Two-point linkage analysis yield a Zmax=2.06 at theta=0.00 for markers DXS1205 and DXS1227. Multipoint lod-scores indicate a candidate interval of 13 cM between markers DSXS1205 and DXS8043, on ch Xq27.2-Xq27.3. These results point to a new locus for BPP in a more centromeric location than previously reported. (C) 2008 Wiley-Liss, Inc.
Resumo:
The majority of small-cell lung cancers (SCLCs) express p16 but not pRb, Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC acid MCC, we wished to determine if this was also the case in MCC, Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and I on 9p. No loss of heterozygosity (LO H) was peen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p, Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined, Half of all informative cases had LOH at D95168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168, A second region (InFNA-D9S126) showed L0H in 10(44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all Il tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p 14' antibody, These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus. (C) 2001 Wiley-Liss, Inc.
Resumo:
The tendency to dizygotic (DZ) twinning is inherited in both humans and sheep, and a fecundity gene in sheep (FecB) maps to sheep chromosome 6, syntenic with human 4q21-25. Our aim was to see whether a gene predisposing to human DZ twinning mapped to this region. DNA was collected from 169 pairs and 17 sets of 3 sisters (trios) from Australia and New Zealand who had each had spontaneous DZ twins, mostly before the age of 35, and from a replication sample of 111 families (92 affected sister pairs) from The Netherlands. Exclusion mapping was carried out after typing 26 markers on chromosome 4, of which 8 spanned the region Likely to contain the human homologue of the sheep FecB gene. We used nonparametric affected sib pair methods for linkage analysis [ASPEX 2.2, Hinds and Risch, 1999]. Complete exclusion of linkage (lod < -2) of a gene conferring a relative risk for sibs as low as 1.5 ((s) > 1.5) was obtained for all but the p terminus region on chromosome 4. Exclusion in the syntenic region was stronger, down to lambda (s) = 1.3. We concluded that if there is a gene influencing DZ twinning on chromosome 4, its effect must be minor. (C) 2001 Wiley-Liss, Inc.
Resumo:
The radiation chemistry of poly(tetrafluoroethylene-co-perfluoropropylene), FEP, with a mole fraction of tetrafluoroethylene, TFE, of 0.90 has been studied under vacuum using Co-60 gamma -radiation over absorbed dose ranges up to 3.0 MGy. The radiolysis temperatures were 300, 363, 423 and 523 K. New structure formation in the copolymers was analyzed by solid-state F-19 NMR. The new structures formed in the copolymers have been identified and the G-values for the formation of new -CF3 groups was 2.2 at the lower temperatures and increased to 2.9 at 523 K. The G-value for the loss of original -CF3 groups was approximate to1.0 at all temperatures. At the lower temperatures there was a net loss of -CF-groups on irradiation, G(CF) of -1.3, -0.9 and -0.5 at 300, 363 and 423 K, respectively, but at 523 K there was a net gain with G(CF) equal to 0.8. (C) 2001 Elsevier Science B.V. All rights reserved.