960 resultados para cell invasion
Resumo:
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.
Resumo:
The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.
Resumo:
The acquisition of the metastatic melanoma phenotype is associated with increased expression of the melanoma cell adhesion molecule MCAM/MUC18 (CD146). However, the mechanism by which MUC18 contributes to melanoma metastasis remains unclear. Herein, we stably silenced MUC18 expression utilizing lentivirus-incorporated small hairpin RNA, in two metastatic melanoma cell lines, A375SM and C8161, and conducted cDNA microarray analysis. We identified and validated that the transcriptional regulator, Inhibitor of DNA Binding-1 (Id-1), previously shown to function as an oncogene in several malignancies, was downregulated by 5.6-fold following MUC18 silencing. Additionally, we found that MUC18 regulated Id-1 expression at the transcriptional level via ATF-3. Interestingly, ATF-3 was upregulated by 6.9 fold in our cDNA microarray analysis following MUC18 silencing. ChIP analysis showed increased binding of ATF-3 to the Id-1 promoter after MUC18 silencing, while mutation of the ATF-3 binding site on the Id-1 promoter increased Id-1 promoter activity in MUC18-silenced cells. These Data suggest that MUC18 silencing promotes inhibition of Id-1 expression by increasing ATF-3 expression and binding to the Id-1 promoter. Rescue of MUC18 reverted the expression of Id-1 and ATF-3, thus validating that they are not off-target effects of MUC18. To further assess the role of Id-1 in melanoma invasion and metastasis, we overexpressed Id-1 in MUC18-silenced cells. Overexpression of Id-1 in MUC18-silenced cells resulted in increased cell invasion, as well as increased expression and activity of MMP-2. Our data further reveal that Id-1 regulates MMP-2 at the transcriptional level through Sp1 and Ets-1. This is the first report to demonstrate that MUC18 does not act exclusively in cell adherence, but is also involved in cell signaling that regulates the expression of genes, such as Id-1 and ATF-3, thus contributing to the metastatic melanoma phenotype.
Resumo:
The extracellular milieu is rich in growth factors that drive tumor progression,but the mechanisms that govern tumor cell sensitivity to those ligands have notbeen fully defined. In this study, we address this question in mice that developmetastatic lung adenocarcinomas through the suppression of the microRNA-200 (miR-200) family. Cancer-associated fibroblasts (CAF) enhance tumorgrowth and invasion by secreting VEGF-A that binds to VEGFR1, a processrequired for tumor growth and metastasis in mice and correlated with a poorprognosis in lung adenocarcinoma patients. In this study, we discovered thatmiR-200 blocked CAF-induced tumor cell invasion by directly targetingVEGFR1 in tumor cells. In the context of previous studies, our findings suggestthat the miR-200 family is a point of convergence for diverse biologic processesthat regulate tumor cell proliferation, invasion, and metastasis; its target genesixdrive epithelial-to-mesenchymal transition (ZEB1 and ZEB2) and promotesensitivity to a potent tumor growth factor emanating from the microenvironment(VEGFR1). Clinical trials should focus not only on the role of VEGFR1 inangiogenesis but also on the expression and activation of VEGFR1 in tumorcells by stromal sources of VEGF-A in the tumor microenvironment as a targetfor metastasis prevention.
Resumo:
Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.
Resumo:
Expression of the hyaluronan-mediated motility receptor (RHAMM, CD168) predicts adverse clinicopathological features and decreased survival for colorectal cancer (CRC) patients. Using full tissue sections, we investigated the expression of RHAMM in tumor budding cells of 103 primary CRCs to characterize the biological processes driving single-cell invasion and early metastatic dissemination. RHAMM expression in tumor buds was analyzed with clinicopathological data, molecular features and survival. Tumor budding cells at the invasive front of CRC expressed RHAMM in 68% of cases. Detection of RHAMM-positive tumor budding cells was significantly associated with poor survival outcome (P = .0312), independent of TNM stage and adjuvant therapy in multivariate analysis (P = .0201). RHAMM-positive tumor buds were associated with frequent lymphatic invasion (P = .0007), higher tumor grade (P = .0296), and nodal metastasis (P = .0364). Importantly, the prognostic impact of RHAMM expression in tumor buds was maintained independently of the number of tumor buds found in an individual case (P = .0246). No impact of KRAS/BRAF mutation, mismatch repair deficiency and CpG island methylation was observed. RHAMM expression identifies an aggressive subpopulation of tumor budding cells and is an independent adverse prognostic factor for CRC patients. These data support ongoing efforts to develop RHAMM as a target for precision therapy.
Resumo:
High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.
Resumo:
Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^
Resumo:
Brain metastasis, which occurs in 40%-60% of patients with advanced melanoma, has led directly to death in the majority of cases. Unfortunately, little is known about the biological and molecular basis of melanoma brain metastases. In our previous study, we developed a model to study human melanoma brain metastasis and found that Stat3 activity was increased in human brain metastatic melanoma cells when compared with that in cutaneous melanoma cells. The increased activation of Stat3 is also responsible for affecting melanoma angiogenesis in vivo and melanoma cell invasion in vitro and significantly affecting the expression of bFGF, VEGF, and MMP-2 in vivo and in vitro. Interestingly, a member of a new family of cytokine-inducible inhibitors of signal transduction, termed suppressors of cytokine signaling 1 (SOCS1) was found to negatively regulate the Janus kinase signal transducer and activator of transcription (Jak/STAT) signaling cascade. Here we report that restoration of SOCS1 expression by transfecting of SOCS1-expressing vector effectively inhibited melanoma brain metastasis through inhibiting Stat3 activation and further affecting melanoma angiogenesis and melanoma cell invasion in vitro, and significantly affected the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) in vitro and in vivo. In addition, we used cDNA array to compare mRNA expression in the SOCS1-transfected and vector-transfected cell lines and found some genes are tightly correlated to the restoration of SOCS1. One of them is Caveolin-1 (Cav-1). Cav-1 was reported to function as a tumor suppressor gene by several groups. Finally, the Cav-1 expression is up-regulated in SOCS1-overexpressing cell line. Further study found the regulation of Cav-1 by SOCS1 occurs through inhibiting Stat3 activation. Activated Stat3 binds directly to Cav-1 promoter and the Cav-1 promoter within -575bp is essential for active Stat3 binding. My studies reveal that Stat3 activation and SOCS1 expression play important roles in melanoma metastases. Moreover, the expression between SOCS1, Stat3 and Cav-1 forms a feedback regulation loop. ^
Resumo:
Paracrine motogenic factors, including motility cytokines and extracellular matrix molecules secreted by normal cells, can stimulate metastatic cell invasion. For extracellular matrix molecules, both the intact molecules and the degradative products may exhibit these activities, which in some cases are not shared by the intact molecules. We found that human peritumoral and lung fibroblasts secrete motility-stimulating activity for several recently established human sarcoma cell strains. The motility of lung metastasis-derived human SYN-1 sarcoma cells was preferentially stimulated by human lung and peritumoral fibroblast motility-stimulating factors (FMSFs). FMSFs were nondialyzable, susceptible to trypsin, and sensitive to dithiothreitol. Cycloheximide inhibited accumulation of FMSF activity in conditioned medium; however, addition of cycloheximide to the migration assay did not significantly affect motility-stimulating activity. Purified hepatocyte growth factor/scatter factor (HGF/SF), rabbit anti-hHGF, and RT-PCR analysis of peritumoral and lung fibroblast HGF/SF mRNA expression indicated that FMSF activity was unrelated to HGF/SF. Partial purification of FMSF by gel exclusion chromatography revealed several peaks of activity, suggesting multiple FMSF molecules or complexes.^ We purified the fibroblast motility-stimulating factor from human lung fibroblast-conditioned medium to apparent homogeneity by sequential heparin affinity chromatography and DEAE anion exchange chromatography. Lysylendopeptidase C digestion of FMSF and sequencing of peptides purified by reverse phase HPLC after digestion identified it as an N-terminal fragment of human fibronectin. Purified FMSF stimulated predominantly chemotaxis but chemokinesis as well of SYN-1 sarcoma cells and was chemotactic for a variety of human sarcoma cells, including fibrosarcoma, leiomyosarcoma, liposarcoma, synovial sarcoma and neurofibrosarcoma cells. The motility-stimulating activity present in HLF-CM was completely eliminated by either neutralization or immunodepletion with a rabbit anti-human-fibronectin antibody, thus further confirming that the fibronectin fragment was the FMSF responsible for the motility stimulation of human soft tissue sarcoma cells. Since human soft tissue sarcomas have a distinctive hematogenous metastatic pattern (predominantly lung), FMSF may play a role in this process. ^
Resumo:
Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents.
Resumo:
The ability of integrins to mediate cell attachment to extracellular matrices and to blood proteins is regulated from inside the cell. Increased ligand-binding activity of integrins is critical for platelet aggregation upon blood clotting and for leukocyte extravasation to inflamed tissues. Decreased adhesion is thought to promote tumor cell invasion. R-Ras, a small intracellular GTPase, regulates the binding of integrins to their ligands outside the cell. Here we show that the Eph receptor tyrosine kinase, EphB2, can control integrin activity through R-Ras. Cells in which EphB2 is activated become poorly adherent to substrates coated with integrin ligands, and a tyrosine residue in the R-Ras effector domain is phosphorylated. The R-Ras phosphorylation and loss of cell adhesion are causally related, because forced expression of an R-Ras variant resistant to phosphorylation at the critical site made cells unresponsive to the anti-adhesive effect of EphB2. This is an unusual regulatory pathway among the small GTPases. Reduced adhesiveness induced through the Eph/R-Ras pathway may explain the repulsive effect of the Eph receptors in axonal pathfinding and may facilitate tumor cell invasion and angiogenesis.
Resumo:
Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits α6 and β1, but not against α1 and α2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against β1, but not against α6 or α2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against α1 integrins impaired only cell adhesion to type IV collagen. Antibodies against α1, α2, α6, and β1, but not α5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins α1 and α2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against α1 and α2, but not α6 and β1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against α1 and α2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-α6 antibodies. Our data indicate that α1 and α2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas α6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.
Resumo:
The development of skin carcinomas presently is believed to be correlated with mutations in the p53 tumor suppressor and ras gene as well as with the loss of chromosome 9. We now demonstrate that, in addition, loss of chromosome 15 may be a relevant genetic defect. Reintroduction of an extra copy of chromosome 15, but not chromosome 4, into the human skin carcinoma SCL-I cells, lacking one copy of each chromosome, resulted in tumor suppression after s.c. injection in mice. Transfection with thrombospondin-1 (TSP-1), mapped to 15q15, induced the same tumor suppression without affecting cell proliferation in vitro or in vivo. Halted tumors remained as small cysts encapsulated by surrounding stroma and blood vessels. These cysts were characterized by increased TSP-1 matrix deposition at the tumor/stroma border and a complete lack of tumor vascularization. Coinjection of TSP-1 antisense oligonucleotides drastically reduced TSP-1 expression and almost completely abolished matrix deposition at the tumor/stroma border. As a consequence, the tumor phenotype reverted to a well vascularized, progressively expanding, solid carcinoma indistinguishable from that induced by the untransfected SCL-I cells. Thus, these data strongly suggest TSP-1 as a potential tumor suppressor on chromosome 15. The data further propose an unexpected mechanism of TSP-1-mediated tumor suppression. Instead of interfering with angiogenesis in general, in this system TSP-1 acts as a matrix barrier at the tumor/stroma border, which, by halting tumor vascularization, prevents tumor cell invasion and, thus, tumor expansion.
Resumo:
The surface protein InlB of the bacterial pathogen Listeria monocytogenes is required for inducing phagocytosis in various nonphagocytic mammalian cell types in vitro. InlB causes tyrosine phosphorylation of host cell adaptor proteins, activation of phosphoinositide 3-kinase, and rearrangements of the actin cytoskeleton. These events lead to phagocytic uptake of the bacterium by the host cell. InlB belongs to the internalin family of Listeria proteins, which also includes InlA, another surface protein involved in host cell invasion. The internalins are the largest class of bacterial proteins containing leucine-rich repeats (LRR), a motif associated with protein–protein interactions. The LRR motif is found in a functionally diverse array of proteins, including those involved in the plant immune system and in the mammalian innate immune response. Structural and functional interpretations of the sequences of internalin family members are presented in light of the recently determined x-ray crystal structure of the InlB LRR domain.