925 resultados para carcinoma-associated fibroblasts
Resumo:
Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery
Resumo:
OBJECTIVES: The objective of this study was to investigate the relationship between BRCA1 protein expression, as determined by immunohistochemistry, and clinical outcome in uterine serous carcinoma (USC). METHODS: A tissue microarray containing duplicate cores of 73 cases of USC was immunohistochemically stained with mouse anti-BRCA1 (Ab-1) mouse monoclonal (MS110) antibody. The cores were scored in a semiquantitative manner evaluating both the distribution and intensity of nuclear staining. BRCA1 protein expression was correlated with progression-free survival. RESULTS: Seventy-two of 73 cases were assessable, and there was a statistically significant decreased progression-free survival for those cases exhibiting tumor cell nuclei staining of 76% or greater (P = 0.0023). CONCLUSIONS: Our study illustrates that a low level of BRCA1 protein expression is a favorable prognostic indicator in USC, similar to what is observed in high-grade serous ovarian carcinoma. Further studies should focus on the BRCA1 status of USCs at a molecular level and also investigate whether BRCA1 protein expression is associated with response to chemotherapy in USC.
Resumo:
Hepatocellular carcinoma (HCC) has a high mortality in East Asia and Sub-Saharan Africa, two regions where the main etiologic factors are chronic infections with hepatitis B vir-us and dietary exposure to aflatoxin. A single base substitution at the third nucleotide of codon 249 of TP53 (R249S) is common in HCC in these regions and has been associated with aflatoxin-DNA adducts. To determine whether R249S may be detected in plasma DNA before HCC diagnosis, we conducted a case-control study nested in a cohort of adult chronic hepatitis B virus carriers from Qidong County, People's Republic of China. Of the 234 plasma specimens that yielded adequate DNA, only 2 (0.9%) were positive for R249S by restriction fragment length polymorphisms, and both of them were controls. Of the 249 subjects tested for aflatoxin-albumin adducts, 168 (67%) were positive, with equal distribution between cases and controls. Aflatoxin-albumin adduct levels were low in the study, suggesting an overall low ongoing exposure to aflatoxin in this cohort. The R249S mutation was detected in 11 of 18 (61%) available tumor tissues. To assess whether low levels of mutant DNA were detectable in pre-diagnosis plasma, 14 plasma specimens from these patients were analyzed by short oligonucleotide mass analysis. Nine of them (64%) were found to be positive. Overall, these results suggest that HCC containing R249S can occur in the absence of significant recent exposure to aflatoxins. The use of short oligonucleotide mass analysis in the context of low ongoing aflatoxin exposure may allow the detection of R249S in plasma several months ahead of clinical diagnosis. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1638-43)
Resumo:
High rates of hepatocellular carcinoma (HCC) in The Gambia, West Africa, are primarily due to a high prevalence of chronic hepatitis B virus infection and heavy aflatoxin exposure via groundnut consumption. We investigated genetic polymorphisms in carcinogen-metabolizing (GSTM1, GSTT1, HYL1*2) and DNA repair (XRCC1) enzymes in a hospital-based case-control study. Incident HCC cases (n = 216) were compared with frequency-matched controls (n = 408) with no clinically apparent liver disease. Although the prevalence of variant genotypes was generally low, in multivariable analysis (adjusting for demographic factors, hepatitis B virus, hepatitis C virus, and TP53 status), the GSTM1-null genotype [odds ratio (OR), 2.45; 95% confidence interval (95% CI), 1.21-4.95] and the heterozygote XRCC1-399 AG genotype (OR, 3.18; 95% CI, 1.35-7.51) were significantly associated with HCC. A weak association of the HYL1*2 polymorphism with HCC was observed but did not reach statistical significance. GSTT1 was not associated with HCC. The risk for HCC with null GSTM1 was most prominent among those with the highest groundnut consumption (OR, 4.67; 95% CI, 1.45-15.1) and was not evident among those with less than the mean groundnut intake (OR, 0.64; 95% Cl, 0.20-2.02). Among participants who had all three suspected aflatoxin-related high-risk genotypes [GSTM1 null, HLY1*2 (HY/HH), and XRCC1 (AG/GG)], a significant 15-fold increased risk of HCC was observed albeit with imprecise estimates (OR, 14.7; 95% CI, 1.27-169). Our findings suggest that genetic modulation of carcinogen metabolism and DNA repair can alter susceptibility to HCC and that these effects may be modified by environmental factors.
Resumo:
The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
Resumo:
Recent murine studies have demonstrated that tumour-associated macrophages in the tumour microenvironment are a key source of the pro-tumourigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumour and tumour-associated cells contribute cathepsin S to promote neovascularisation and tumour growth. Cathepsin S depleted and control colorectal MC38 tumour cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumour, tumour-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumour growth and development, and revealed a clear contribution of both tumour and tumour-associated cell derived cathepsin S. The most significant impact on tumour development was obtained when the protease was depleted from both sources. Further characterisation revealed that the loss of cathepsin S led to impaired tumour vascularisation, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumour growth. Analysis of cell types showed that in addition to the tumour cells, tumour-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumour-associated cells can positively contribute to developing tumours and highlight cathepsin S as a therapeutic target in cancer.
Resumo:
Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.
Resumo:
The tumour microenvironment has an important role in cancer progression and recent reports have proposed that stromal AKT is activated and regulates tumourigenesis and invasion. We have shown, by immuno-fluorescent analysis of oro-pharyngeal cancer biopsies, an increase in AKT activity in tumour associated stromal fibroblasts compared to normal stromal fibroblasts. Using organotypic raft co-cultures, we show that activation of stromal AKT can induce the invasion of keratinocytes expressing the HPV type 16 E6 and E7 proteins, in a Keratinocyte Growth Factor (KGF) dependent manner. By depleting stromal fibroblasts of each of the three AKT isoforms independently, or through using isoform specific inhibitors, we determined that stromal AKT2 is an essential regulator of invasion and show in oro-pharyngeal cancers that AKT2 specific phosphorylation events are also identified in stromal fibroblasts. Depletion of stromal AKT2 inhibits epithelial invasion through activating a protective pathway counteracting KGF mediated invasions. AKT2 depletion in fibroblasts stimulates the cleavage and release of IL1B from stromal fibroblasts resulting in down-regulation of the KGF receptor (fibroblast growth factor receptor 2B (FGFR2B)) expression in the epithelium. We also show that high IL1B is associated with increased overall survival in a cohort of patients with oro-pharyngeal cancers. Our findings demonstrate the importance of stromal derived growth factors and cytokines in regulating the process of tumour cell invasion.
Resumo:
Folate is implicated in carcinogenesis via effects on DNA synthesis, repair, and methylation. Efficient folate metabolism requires other B vitamins and is adversely affected by smoking and alcohol. Esophageal adenocarcinoma (EAC) may develop through a process involving inflammation [reflux esophagitis (RE)] leading to metaplasia [Barrett’s esophagus (BE)] and carcinoma. Within a population-based, case-control study, we investigated associations between dietary folate and related factors and risks of EAC, BE, and RE. EAC and BE cases had histologically confirmed disease; RE cases had endoscopically visible inflammation. Controls, age-sex frequency matched to EAC cases, were selected through population and general practice registers. Participants underwent structured interviews and completed food-frequency questionnaires. Multivariate ORs and 95% CIs were computed using logistic regression. A total of 256 controls and 223 EAC, 220 BE, and 219 RE cases participated. EAC risk decreased with increasing folate intake (OR highest vs. lowest = 0.56; 95% CI: 0.31, 1.00; P-trend < 0.01). Similar trends were found for BE (P-trend < 0.01) and RE (P-trend = 0.01). Vitamin B-6 intake was significantly inversely related to risks of all 3 lesions. Riboflavin intake was inversely associated with RE. Vitamin B-12 intake was positively associated with EAC. For EAC, there was a borderline significant interaction between folate intake and smoking (P-interaction = 0.053); compared with nonsmokers with high (≥median) folate intake, current smokers with low intakes (<median) had an 8-fold increased risk (OR: 8.15; 95% CI: 3.61, 18.40). The same group had increased BE risk (OR: 2.93; 95% CI: 1.24, 6.92; P-interaction = 0.12). Folate and other dietary methyl-group factors are implicated in the etiology of EAC and its precursors.
Resumo:
AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.
RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.
INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.
Resumo:
Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype, we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G(2)/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.
Resumo:
Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.
Resumo:
Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality.
Resumo:
Background: The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel expression in gingival fibroblasts is currently limited. The role of non-neuronal TRP channel expression is an area of much research interest particularly since TRP channel activation has recently been hypothesised to be associated with inflammation. Objectives: The present study was designed to determine the expression of TRPV1, TRPV2, TRPV3 and TRPV4 on human gingival fibroblasts. Methods: Human gingival fibroblasts were derived by explant culture from surgical tissue following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Cell lysates of gingival fibroblasts were electrophoresed and blotted on to nitrocellulose before probing with specific anti-TRP antibodies. Immunoreactive bands were detected using anti-species antibodies and chemiluminescent detection. Results: Gingival fibroblasts were shown to express proteins corresponding to the TRPV1, TRPV2, TRPV3 and TRPV4 channels as determined by western blotting. Conclusion: This study reports for the first time the expression of TRPV1, TRPV2, TRPV3 and TRPV4 by gingival fibroblasts. Knowledge of the expression of TRP channels by human gingival fibroblasts will guide future research on the roles of TRP channels in sensing the external environment in the oral cavity.
Resumo:
Background: The oral cavity is a frontline barrier which is often exposed to physical trauma and noxious substances, leading to pro-inflammatory responses designed to be protective in nature. The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel activation in gingival and periodontal inflammation is currently limited. Gingival fibroblasts are the most abundant structural cell in periodontal tissues and we hypothesised that they may have a role in the inflammatory response associated with TRP channel activation. Objectives: The present study was designed to determine whether the TRPV1 agonist capsaicin could elicit a pro-inflammatory response in gingival fibroblasts in vitro by up-regulation of interleukin-8 (IL-8) production. Methods: Gingival fibroblasts were derived by explant culture from surgical tissues following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Following treatment of gingival fibroblasts with capsaicin, IL-8 levels were measured by ELISA. The potential cytotoxicity of capsaicin was determined by the MTT assay. Results: In gingival fibroblasts treated with the TRPV1 agonist capsaicin (10µM), IL-8 production was significantly increased compared with untreated control cells. Capsaicin was shown not to be toxic to gingival fibroblasts at the concentrations studied. Conclusion: The identification of factors that modulate pro-inflammatory cytokine production is important for our understanding of gingival and periodontal inflammation. This study reports for the first time that gingival fibroblasts respond to the TRPV1 agonist capsaicin by increased production of IL-8. Activation of TRPV1 on gingival fibroblasts could therefore have an important role in initiating and sustaining the inflammatory response associated with periodontal diseases