937 resultados para carbothermal reduction process.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distribution of reduced sulfur forms in vertical sediment sections in deep-sea basins of the Atlantic Ocean is under study. Presence of weak sulfate reduction process resulted from low concentrations of reactive organic matter and differing by characteristic features of the initial stage of development. Interpretation of results is given on the base of consideration of dynamic redox equilibrium in the system: reduced sulfur - dissolved oxygen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two types of subunits: RNR1 contains the active site for reduction and the binding sites for the nucleotide allosteric effectors. RNR2 contains the diiron-tyrosyl radical (Y⋅) cofactor essential for the reduction process. Studies in yeast have recently identified four RNR subunits: Y1 and Y3, Y2 and Y4. These proteins have been expressed in Saccharomyces cerevisiae and in Escherichia coli and purified to ≈90% homogeneity. The specific activity of Y1 isolated from yeast and E. coli is 0.03 μmol⋅min−1⋅mg−1 and of (His)6-Y2 [(His)6-Y2-K387N] from yeast is 0.037 μmol⋅min−1⋅mg−1 (0.125 μmol⋅min−1⋅mg−1). Y2, Y3, and Y4 isolated from E. coli have no measurable activity. Efforts to generate Y⋅ in Y2 or Y4 using Fe2+, O2, and reductant have been unsuccessful. However, preliminary studies show that incubation of Y4 and Fe2+ with inactive E. coli Y2 followed by addition of O2 generates Y2 with a specific activity of 0.069 μmol⋅min−1⋅mg−1 and a Y⋅. A similar experiment with (His)6-Y2-K387N, Y4, O2, and Fe2+ results in an increase in its specific activity to 0.30 μmol⋅min−1⋅mg−1. Studies with antibodies to Y4 and Y2 reveal that they can form a complex in vivo. Y4 appears to play an important role in diiron-Y⋅ assembly of Y2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The outer-sphere oxidation of Fell in the mixed-valence complex trans-[(LCoNCFeII)-Co-14S-N-III(CN)(6)](-), being L-14S an N3S2 macrocylic donor set on the cobalt(III) center, has been studied. The comparison with the known processes of N-5 macrocycle complexes has been carried out in view of the important differences occurring on the redox potential of the cobalt center. The results indicate that the outer-sphere oxidation reactions with S2O82- and [Co(ox)(3)](3-) involve a great amount of solvent-assisted hydrogen bonding that, as a consequence from the change from two amines to sulfur donors, are more restricted. This is shown by the more positive values found for DeltaS(double dagger) and DeltaV(double dagger). The X-ray structure of the oxidized complex has been determined, and it is clearly indicative of the above-mentioned solvent-assisted hydrogen bonding between nitrogen and cyanide donors on the cobalt and iron centers, respectively. trans-[(LCoNCFeIII)-Co-14S-N-III(CN)(6)], as well as the analogous N-5 systems trans-[(LCoNCFeIII)-Co-14-N-III(CN)(6)], trans-[(LCoNCFeIII)-Co-15-N-III-(CN)(6)], and cis-[(LCoNCFeIII)-Co-n-N-III(CN)(6)], Oxidize water to hydrogen peroxide at pH > 10 with a rather simple stoichiometry, i.e., [(LCoNCFeIII)-Co-n-N-III(CN)(5)] + OH- - [(LCoNCFeII)-Co-n-N-III(CN)(5)](-) + 1/2H(2)O(2). In this way, the reversibility of the iron oxidation process is achieved. The determination of kinetic and thermal and pressure activation parameters for this water to hydrogen peroxide oxidation leads to the kinetic determination of a cyanide based OH- adduct of the complex. A second-order dependence on the base concentration is associated with deprotonation of this adduct to produce the final inner-sphere reduction process. The activation enthalpies are found to be extremely low (15 to 35 kJ mol(-1)) and responsible for the very fast reaction observed. The values of DeltaS(double dagger) and DeltaV(double dagger) (-76 to -113 J K-1 mol(-1) and -5.5 to -8.9 cm(3) mol(-1), respectively) indicate a highly organized but not very compressed transition state in agreement with the inner-sphere one-electron transfer from O2- to Fe-III.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The different oxidation states of chromium allow its bulk oxide form to be reducible, facilitating the oxygen vacancy formation process, which is a key property in applications such as catalysis. Similar to other useful oxides such as TiO2, and CeO2, the effect of substitutional metal dopants in bulk Cr2O3 and its effect on the electronic structure and oxygen vacancy formation are of interest, particularly in enhancing the latter. In this paper, density functional theory (DFT) calculations with a Hubbard + U correction (DFT+U) applied to the Cr 3d and O 2p states, are carried out on pure and metal-doped bulk Cr2O3 to examine the effect of doping on the electronic and geometric structure. The role of dopants in enhancing the reducibility of Cr2O3 is examined to promote oxygen vacancy formation. The dopants are Mg, Cu, Ni, and Zn, which have a formal +2 oxidation state in their bulk oxides. Given this difference in host and, dopant oxidation states, we show that to predict the correct ground state two metal dopants charge compensated with an oxygen vacancy are required. The second oxygen atom removed is termed "the active" oxygen vacancy and it is the energy required to remove this atom that is related to the reduction process. In all cases, we find that substitutional doping improves the oxygen vacancy formation of bulk Cr2O3 by lowering the energy cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Procedures that provide detection, location and correction of tampering in documents are known as anti-tampering schemes. In this paper we describe how to construct an anti-tampering scheme using a pre-computed tree of hashes. The main problems of constructing such a scheme are its computational feasibility and its candidate reduction process. We show how to solve both problems by the use of secondary hashing over a tree structure. Finally, we give brief comments on our ongoing work in this area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Targets to cut 2050 CO2 emissions in the steel and aluminium sectors by 50%, whilst demand is expected to double, cannot be met by energy efficiency measures alone, so options that reduce total demand for liquid metal production must also be considered. Such reductions could occur through reduced demand for final goods (for instance by life extension), reduced demand for material use in each product (for instance by lightweight design) or reduced demand for material to make existing products. The last option, improving the yield of manufacturing processes from liquid metal to final product, is attractive in being invisible to the final customer, but has had little attention to date. Accordingly this paper aims to provide an estimate of the potential to make existing products with less liquid metal production. Yield ratios have been measured for five case study products, through a series of detailed factory visits, along each supply chain. The results of these studies, presented on graphs of cumulative energy against yield, demonstrate how the embodied energy in final products may be up to 15 times greater than the energy required to make liquid metal, due to yield losses. A top-down evaluation of the global flows of steel and aluminium showed that 26% of liquid steel and 41% of liquid aluminium produced does not make it into final products, but is diverted as process scrap and recycled. Reducing scrap substitutes production by recycling and could reduce total energy use by 17% and 6% and total CO 2 emissions by 16% and 7% for the steel and aluminium industries respectively, using forming and fabrication energy values from the case studies. The abatement potential of process scrap elimination is similar in magnitude to worldwide implementation of best available standards of energy efficiency and demonstrates how decreasing the recycled content may sometimes result in emission reductions. Evidence from the case studies suggests that whilst most companies are aware of their own yield ratios, few, if any, are fully aware of cumulative losses along their whole supply chain. Addressing yield losses requires this awareness to motivate collaborative approaches to improvement. © 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer. A mixed-signal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time. An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current. The digital processor can automatically compensate presetting frequency variation with process and temperature, and control the operation of the auxiliary tuning loop. A 1.2 GHz integer-N synthesizer with 1 MHz reference input Was implemented in a 0.18μm process. The measured results demonstrate that the typical settling time of the synthesizer is less than 3μs,and the phase noise is -108 dBc/Hz@1MHz.The reference spur is -52 dBc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A carbothermal hydrogen reduction method was employed for the preparation of activated carbon supported bimetallic carbide. The resultant samples were characterized by BET surface area measurement, X-ray diffraction, and temperature-programmed reduction-mass spectroscopy. The results showed that nanostructured beta-Mo2C can be formed on the activated carbon by carbothermal hydrogen reduction above 700 degreesC. The particle sizes of beta-Mo2C increase with increasing reaction temperatures and Mo loading. The bimetallic CoMo carbide can be synthesized by the carbothermal hydrogen reduction even around 600 degreesC. The bimetallic CoMo carbide is from carbothermal hydrogen reduction of CoMoO4 precursor and is easily formed when the Co/Mo molar ratio is 1.0. Separation of the bimetallic CoMo carbide phase into Mo carbide and Co metal occurs when the temperature of the reduction is above 700 degreesC. The addition of a second metal such as Co and Ni, decreases the formation temperature of carbide because the second metal promotes formation of CHx species from reactive carbon atoms or groups on carbon material and hydrogen, which further carburizes oxide precursors. (C) 2003 Elsevier Science Ltd. All rights reserved.