903 resultados para blood clotting factor 10a
Resumo:
This study, to elucidate the role of des(1-3)IGF-I in the maturation of IGF-I,used two strategies. The first was to detect the presence of enzymes in tissues, which would act on IGF-I to produce des(1-3)IGF-I, and the second was to detect the potential products of such enzymic activity, namely Gly-Pro-Glu(GPE), Gly-Pro(GP) and des(l- 3)IGF-I. No neutral tripeptidyl peptidase (TPP II), which would release the tripeptide GPE from IGF-I, was detected in brain, urine nor in red or white blood cells. The TPPlike activity which was detected, was attributed to a combined action of a dipeptidyl peptidase (DPP N) and an aminopeptidase (AP A). A true TPP II was, however, detected in platelets. Two purified TPP II enzymes were investigated but they did not release GPE from IGF-I under a variety of conditions. Consequently, TPP II seemed unlikely to participate in the formation of des(1-3)IGF-I. In contrast, an acidic tripeptidyl peptidase activity (TPP I) was detected in brain and colostrum, the former with a pH optimum of 4.5 and the latter 3.8. It seems likely that such an enzyme would participate in the formation of des( 1-3 )IGF-I in these tissues in vitro, ie. that des(1-3)IGF-I may have been produced as an artifact in the isolation of IGF-I from brain and colostrum in acidic conditions. This contrasts with suggestions of an in vivo role for des(1-3)IGF-I, as reported by others. The activity of a dipeptidyl peptidase N (DPP N) from urine, which should release the dipeptide GP from IGF-I, was assessed under a variety of conditions and with a variety of additives and potential enzyme stimulants, but there was no release of GP. The DPP N also exhibited a transferase activity with synthetic substrates in the presence of dipeptides, at lower concentrations than previously reported for other acceptors or other proteolytic enzymes. In addition, a low concentration of a product,possibly the tetrapeptide Gly-Pro-Gly-Leu, was detected with the action of the enzyme on IGF-I in the presence of the dipeptide Gly-Leu. As part of attempts to detect tissue production of des(1-3)IGF-I, a monoclonal antibody (MAb ), directed towards the GPE- end ofiGF-I was produced by immunisation with a 10-mer covalently attached to a carrier protein. By the use of indirect ELISA and inhibitor studies, the MAb was shown to selectively recognise peptides with anNterminal GPE- sequence, and applied to the indirect detection of des(1-3)IGF-I. The concentration of GPE in brain, measured by mass spectrometry ( MS), was low, and the concentration of total IGF-I (measured by ELISA with a commercial polyclonal antibody [P Ab]) was 40 times higher at 50 nmol/kg. This also, was not consistent with the action of a tripeptidyl peptidase in brain that converted all IGF-I to des(1-3)IGF-I plus GPE. Contrasting ELISA results, using the MAb prepared in this study, suggest an even higher concentration of intact IGF-I of 150 nmollkg. This would argue against the presence of any des( 1-3 )IGF-I in brain, but in turn, this indicates either the presence of other substances containing a GPE amino-terminus or other cross reacting epitope. Although the results of the specificity studies reported in Chapter 5 would make this latter possibility seem unlikely, it cannot be completely excluded. No GP was detected in brain by MS. No GPE was detected in colostrum by capillary electrophoresis (CE) but the interference from extraneous substances reduced the detectability of GPE by CE and this approach would require further, prior, purification and concentration steps. A molecule, with a migration time equal to that of the peptide GP, was detected in colostrum by CE, but the concentration (~ 10 11mo/L) was much higher than the IGF-I concentration measured by radio-immunoassay using a PAb (80 nmol/L) or using a Mab (300-400 nmolL). A DPP IV enzyme was detected in colostrum and this could account for the GP, derived from substrates other than IGF-1. Based on the differential results of the two antibody assays, there was no indication of the presence of des(1-3)IGF-I in brain or colostrum. In the absence of any enzyme activity directed towards the amino terminus of IGF-I and the absence any potential products, IGF-I, therefore, does not appear to "mature" via des(1-3)IGF-I in the brain, nor in the neutral colostrum. In spite of these results which indicate the absence of an enzymic attack on IGF-I and the absence of the expected products in tissues, the possibility that the conversion of IGF-I may occur in neutral conditions in limited amounts, cannot be ruled out. It remains possible that in the extracellular environment of the membrane, a complex interaction of IGF-I, binding protein, aminopeptidase(s) and receptor, produces des(1- 3)IGF-I as a transient product which is bound to the receptor and internalised.
Resumo:
The absence of cellular immunity is central to the pathogenesis of herpesvirus-mediated diseases after allogeneic hemopoietic stem cell transplantation (HSCT). For both bone marrow (BM)– and granulocyte-colony stimulating factor–mobilized peripheral blood stem cells (PBSCs) HSCT, donor-derived Epstein-Barr virus (EBV) and cytomegalovirus (CMV) peptide–specific CD8+ T cells clones undergo early expansion and persist long-term, with additional diversification arising from novel antigen-specific clones from donor-derived progenitors. Whether BM or PBSC is the superior source of antiviral CD8+ T cells is unclear. Given that PBSC has largely replaced BM as a source of stem cells for HSCT, it is unlikely that herpesvirus effector T-cell reconstitution will ever be compared prospectively. PBSC grafts contain 10 to 30 times more T cells than BM and a randomized study found proven viral infections were more frequent in BM than PBSC recipients, suggesting viral-specific T-cell immunity is enhanced in PBSC. Recently Moss showed in lung cancer patients that herpesvirus-specific BM-derived CD8+ T cells have unique homing properties relative to herpesvirus-specific CD8+ T cells present in unmobilized peripheral blood (PB). Immunodominant EBV-lytic peptide–specific CD8+ T cells were enriched in BM but were reduced for CMV peptide–specific CD8+ T cells relative to PB. EBV-latent peptide–specific CD8+ T cells were equivalent, which has relevance in the context of posttransplantation lymphoproliferative disorder for which impaired EBV-latent CD8+ T-cell immunity is a risk-factor. A comparison of herpesvirus-specific cellular immunity in PBSC versus PB has yet to be performed.
Resumo:
Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.
Resumo:
Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Resumo:
Bovine colostrum has been shown to influence the cytokine production of bovine leukocytes. However, it remains unknown whether processed bovine colostrum, a supplement popular among athletes to enhance immune function, is able to modulate cytokine secretion of human lymphocytes and monocytes. The aim of this investigation was to determine the influence of a commercially available bovine colostrum protein concentrate (CPC) to stimulate cytokine production by human peripheral blood mononuclear cells (PBMCs). Blood was sampled from four healthy male endurance athletes who had abstained from exercise for 48 h. PBMCs were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5, and 5% with and without lipopolysaccharide (LPS) (3 microg/mL) and phytohemagglutinin (PHA) (2.5 microg/mL). Cell supernatants were collected at 6 and 24 h of culture for the determination of tumor necrosis factor (TNF), interferon (IFN)-gamma, interleukin (IL)-10, IL-6, IL-4, and IL-2 concentrations. Bovine CPC significantly stimulated the release of IFN-gamma, IL-10, and IL-2 (p < 0.03). The addition of LPS to PBMCs cocultured with bovine CPC significantly stimulated the release of IL-2 and inhibited the early release of TNF, IL-6, and IL-4 (p < 0.02). Phytohemagglutinin stimulation in combination with bovine CPC significantly increased the secretion of IL-10 and IL-2 at 6 h of culture and inhibited IFN-gamma and TNF (p < 0.05). This data show that a commercial bovine CPC is able to modulate in vitro cytokine production of human PBMCs. Alterations in cytokine secretion may be a potential mechanism for reported benefits associated with supplementation.
Resumo:
The present study examined polymorphisms of genes that might be involved in the onset of essential hypertension (HT). These included the (i) growth hormone gene (GH1), whose locus has recently been linked to elevated blood pressure (BP) in the stroke-prone SHR, although recent sib-pair analysis of a polymorphism near the human chorionic somatomammotropin gene (a member of the GH cluster) was unable to show linkage with HT; (ii) renal kallikrein gene (KLK1); and (iii) atrial natriuretic factor gene (ANF), where a primary defect in production or activity of kallikrein or ANF could cause NaCl retention and vasoconstriction. Association analyses were conducted to compare restriction fragment length polymorphisms (RFLPs) of each gene in 85 HT and 95 normotensive (NT) Caucasian subjects whose parents had a similar BP status at age ≥50 years. The frequency of the minor allele of (i) a RsaI RFLP in the promoter of GH1, amplified from leukocyte DNA by the polymerase chain reaction, was 0.15 in the HT group and 0.14 in the NT group (χ1=0.34, P=0.55); (ii) a TaqI RFLP for KLK1 was 0.035 in the HT group and 0.015 in the NT group (χ2=1.5, P=0.21); and (iii) a XhoI RFLP for ANF was 0.50 in HTs and 0.46 in NTs (χ2=0.20, P=0.65). Studies of HT pedigrees found one family in which the ANF locus and HT were not linked, owing to an obligate recombinant. The present data thus provide no evidence for involvement of the growth hormone, renal kallikrein, nor ANF gene in the causation of essential hypertension.
Resumo:
Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.
Resumo:
Endothelin-1 (ET-1) is a potent vasoactive peptide and a hypoxia-inducible angiogenic growth factor associated with the development and growth of solid tumours. This study evaluated the expression of big endothelin-1 (big ET-1), a stable precursor of ET-1, and ET-1 in non-small cell lung cancer (NSCLC). Big ET-1 expression was evaluated in paraffin-embedded tissue sections from 10 NSCLC tumours using immunohistochemistry and in situ hybridisation. The production of big ET-1 and ET-1 was studied in six established NSCLC cell lines. The plasma concentrations of big ET-1 were measured in 30 patients with proven NSCLC prior to chemotherapy by means of a sandwich enzyme-linked immunoassay and compared to levels in 20 normal controls. Big ET-1 immunostaining was detected in the cancer cells of all tumours studied. Using in situ hybridisation, tumour cell big ET-1 mRNA expression was demonstrated in all samples. All six NSCLC cell lines expressed ET-1, with big ET-1 being detected in three. The median big ET-1 plasma level in patients with NSCLC was 5.4 pg/mL (range 0-22.7 pg/mL) and was significantly elevated compared to median big ET-1 plasma levels in controls, 2.1 pg/mL (1.2-13.4 pg/mL) (p=0.0001). Furthermore, patients with plasma big ET-1 levels above the normal range (upper tertile) had a worse outcome (p=0.01). In conclusion, big ET-1/ET-1 is expressed by resected NSCLC specimens and tumour cell lines. Plasma big ET-1 levels are elevated in NSCLC patients compared to controls with levels >7.8 pg/mL being associated with a worse outcome. The development of selective ET-1 antagonists such as Atrasentan indicates that ET-1 may be a therapeutic target in NSCLC. © 2004 Wichtig Editore.
Resumo:
Background: Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and/or a survival factor in the disease. Methods: TXS expression was examined in human NSCLC and matched controls by western analysis and IHC. TXS metabolite (TXB 2) levels were measured by EIA. A 204-patient NSCLC TMA was stained for COX-2 and downstream TXS expression. TXS tissue expression was correlated with clinical parameters, including overall survival. Cell proliferation/survival and invasion was examined in NSCLC cells following both selective TXS inhibition and stable TXS over-expression. Results: TXS was over-expressed in human NSCLC samples, relative to matched normal controls. TXS and TXB 2levels were increased in protein (p < 0.05) and plasma (p < 0.01) NSCLC samples respectively. TXS tissue expression was higher in adenocarcinoma (p < 0.001) and female patients (p < 0.05). No significant correlation with patient survival was observed. Selective TXS inhibition significantly reduced tumour cell growth and increased apoptosis, while TXS over-expression stimulated cell proliferation and invasiveness, and was protective against apoptosis. Conclusion: TXS is over-expressed in NSCLC, particularly in the adenocarcinoma subtype. Inhibition of this enzyme inhibits proliferation and induces apoptosis. Targeting thromboxane synthase alone, or in combination with conventional chemotherapy is a potential therapeutic strategy for NSCLC. © 2011 Cathcart et al; licensee BioMed Central Ltd.
Resumo:
Growth and metastatic spread of invasive carcinoma depends on angiogenesis, the formation of new blood vessels. Platelet-derived endothelial cell growth factor (PD-ECGF) is an angiogenic growth factor for a number of solid tumors, including lung, bladder, colorectal, and renal cell cancer. Cervical intraepithelial neoplasia (CIN) is the precursor to squamous cell cervical carcinoma (SCC). Mean vessel density (MVD) increases from normal cervical tissue, through low- and high-grade CIN to SCC. We evaluated PD-ECGF immunoreactivity and correlated its expression with MVD in normal, premalignant, and malignant cervical tissue. PD-ECGF expression was assessed visually within the epithelial tissues and scored on the extent and intensity of staining. MVD was calculated by counting the number of vessels positive for von Willebrand factor per unit area subtending normal or CIN epithelium or within tumor hotspots for SCC. Cytoplasmic and/or nuclear PD-ECGF immunoreactivity was seen in normal epithelium. PD-ECGF expression significantly increased with histologic grade from normal, through low- and high-grade CIN, to SCC (P < .02). A progressive significant increase in the microvessel density was also seen, ranging from a mean of 28 vessels for normal tissue to 57 for SCC (P < .0005). No correlation was found between PD-ECGF expression and MVD (P = .45). We conclude that PD-ECGF expression and MVD increase as the cervix transforms from a normal to a malignant phenotype. PD-ECGF is thymidine phosphorylase, a key enzyme in the activation of fluoropyrimidines, including 5-fluorouracil. Evaluation of PD-ECGF thymidine phosphorylase expression may be important in designing future chemotherapeutic trials in cervical cancer. Copyright (C) 2000 by W.B. Saunders Company.
Resumo:
Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.
Resumo:
Aim/Background
TRALI is hypothesised to develop via a two-event mechanism involving both the patieint's underlying morbidity and blood product factors. The storage of cellular products has been implicated in cases of non-antibody mediated TRALI, however the pathophysiological mechanisms are undefined. We investigated blood product storage-related modulation of inflmmatory cells and medicators involved in TRALI.
Methods
In an in vitro mode, fresh human whole blood was mixed with culture media (control) or LPS as a 1st event and "transfused" with 10% (v/v) pooled supernatant (SN) from Day 1 (d1, n=75) or Day 42 (D42, n=113) packed red blood cells (PRBCs) as a 2nd event. Following 6hrs, culture SN was used to assess the overall inflammatory response (cytometric bead array) and a duplicate assay containing protein transport inhibitor was used to assess neutrophil- and monocyte-specific inflmamatory responses using multi-colour flow cytometry. Panels: IL-6, IL-8, IL-10, IL-12, IL-1, TNF, MCP-1, IP-10, MIP-1. One-way ANOVA 95% CI.
Results
In the absence of LPS, exposure to D1 or D42 PRBC-SN reduced monocyte expression of IL-6, IL-8 and Il-10. D42 PRBC-SN also reduced monocyte IP-10, and the overall IL-8 production was increased. In the presence of LPS, D1-PRBC SN only modified overall IP-10 levels which were reduced. However, cf LPS alone, the combination of LPS and D42 PRBC-SN resulted in increased neutrophil and monocyte productionof IL-1 and IL-8 as well as reduced monocyte TNF production. Additionally, LPS and D42 PRBC-SN resulted in overall inflmmatory changes: elevated IL-8,
Resumo:
Most research virtually ignores the important role of a blood clot in supporting bone healing. In this study, we investigated the effects of surface functional groups carboxyl and alkyl on whole blood coagulation, complement activation and blood clot formation. We synthesised and tested a series of materials with different ratios of carboxyl (–COOH) and alkyl (–CH3, –CH2CH3 and –(CH2)3CH3) groups. We found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/– CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of coagulation activation. The pattern of complement activation was entirely similar to that of surface-induced coagulation. All material coated surfaces resulted in clots with thicker fibrin in a denser network at the clot/material interface and a significantly slower initial fibrinolysis when compared to uncoated glass surfaces. The amounts of platelet-derived growth factor-AB (PDGF-AB) and transforming growth factor-b (TGF-b1) released from an intact clot were higher than a lysed clot. The release of PDGF-AB was found to be correlated with the fibrin density. This study demonstrated that surface chemistry can significantly influence the activation of blood coagulation and complement system, resultant clot structure, susceptibility to fibrinolysis as well as release of growth factors, which are important factors determining the bone healing process.
Resumo:
Membrane type 1 metalloprotease (MT1-MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro-MMP2. We investigated the effects of MT1-MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1-MMP or MMP-2. MT1-MMP and MMP-2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1-MMP 1) were able to activate endogenous or exogenous pro-MMP-2, 2) displayed an enhanced in vitro invasiveness through matrigel-coated filters independent of MMP-2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1-MMP regardless of MMP-2 expression levels, suggesting that the production of MMP-2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1-MMP-producing cells was associated with an up-regulation of VEGF expression. These results emphasize the importance of MT1-MMP during tumor angiogenesis and open new opportunities for the development of antiangiogenic strategies combining inhibitors of MT1-MMP and VEGF antagonists. - Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression.
Resumo:
The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.