933 resultados para barriere architettoniche mappe java accessibilità
Resumo:
This work presents JFLoat, a software implementation of IEEE-754 standard for binary floating point arithmetic. JFloat was built to provide some features not implemented in Java, specifically directed rounding support. That feature is important for Java-XSC, a project developed in this Department. Also, Java programs should have same portability when using floating point operations, mainly because IEEE-754 specifies that programs should have exactly same behavior on every configuration. However, it was noted that programs using Java native floating point types may be machine and operating system dependent. Also, JFloat is a possible solution to that problem
Resumo:
This dissertation aims at extending the JCircus tool, a translator of formal specifications into code that receives a Circus specification as input, and translates the specification into Java code. Circus is a formal language whose syntax is based on Z s and CSP s syntax. JCircus generated code uses JCSP, which is a Java API that implements CSP primitives. As JCSP does not implement all CSP s primitives, the translation strategy from Circus to Java is not trivial. Some CSP primitives, like parallelism, external choice, communication and multi-synchronization are partially implemented. As an aditional scope, this dissertation will also develop a tool for testing JCSP programs, called JCSPUnit, which will also be included in JCircus new version. The extended version of JCircus will be called JCircus 2.0.
Resumo:
The development of smart card applications requires a high level of reliability. Formal methods provide means for this reliability to be achieved. The BSmart method and tool contribute to the development of smart card applications with the support of the B method, generating Java Card code from B specifications. For the development with BSmart to be effectively rigorous without overloading the user it is important to have a library of reusable components built in B. The goal of KitSmart is to provide this support. A first research about the composition of this library was a graduation work from Universidade Federal do Rio Grande do Norte, made by Thiago Dutra in 2006. This first version of the kit resulted in a specification of Java Card primitive types byte, short and boolean in B and the creation of reusable components for application development. This work provides an improvement of KitSmart with the addition of API Java Card specification made in B and a guide for the creation of new components. The API Java Card in B, besides being available to be used for development of applications, is also useful as a documentation of each API class. The reusable components correspond to modules to manipulate specific structures, such as date and time. These structures are not available for B or Java Card. These components for Java Card are generated from specifications formally verified in B. The guide contains quick reference on how to specify some structures and how some situations were adapted from object-orientation to the B Method. This work was evaluated through a case study made through the BSmart tool, that makes use of the KitSmart library. In this case study, it is possible to see the contribution of the components in a B specification. This kit should be useful for B method users and Java Card application developers
Resumo:
This work aims to develop modules that will increase the computational power of the Java-XSC library, and XSC an acronym for "Language Extensions for Scientific Computation . This library is actually an extension of the Java programming language that has standard functions and routines elementary mathematics useful interval. in this study two modules were added to the library, namely, the modulus of complex numbers and complex numbers of module interval which together with the modules original numerical applications that are designed to allow, for example in the engineering field, can be used in devices running Java programs
Resumo:
This paper introduces Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in Power Electronics. The applet programs were developed with the purpose of providing an interactive visual simulation and analysis of idealized uncontrolled single-phase, and three-phase rectifiers. In addition, this paper discusses the development and utilization of JAVA applet programs to solve some design-oriented equations for rectifier applications. The major goal of these proposed JAVA applets was to provide more facilities for the students increase their pace in Power Electronics course, emphasizing waveforms analysis, and providing conditions for an on-line comparative analysis among different hands-on laboratory experiences, via a normal Internet TCP/IP connection. Therefore, using the proposed JAVA applets, which were embedded in a WWW-HTML-based course in Power Electronics, was observed an important improvement of the apprenticeship for the content of this course. Therefore, the course structure becomes fluid, allowing a true on-line course over the WWW, motivating students to learn its content, and apply it in some applications-oriented projects, and their home-works.
Resumo:
This paper presents Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in basic power electronics circuits. These tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulate steady-state idealized rectifiers (uncontrolled and controlled; single-phase and three-phase). In addition, this paper discusses the development and the use of the Java applet programs to assist the teaching of basics rectifier power electronics circuits, and to serve as a first design tool for basics power electronics circuits in the experiments of the laboratories. In order to validate the developed simulation applets, the results were confronted with results obtained from a well-know simulator package PSPICE. © 2005 IEEE.
Resumo:
Edition en français et en spagnol disponible dans la Bibliothéque (LC/G.2294(SES.31/3))
Resumo:
Reconfigurable computing is one of the most recent research topics in computer science. The Altera - Nios II soft-core processor can be included in a large set of reconfigurable architectures, especially because it is designed in software, allowing it to be configured according to the application. The recent growth in applications that demand reconfigurable computing made necessary the building of compilers that translate high level languages source codes into reconfigurable devices instruction sets. In this paper we present a compiler that takes as input the bytecodes generated by a Java front-end compiler and generates a set of instructions that attends to the Nios II processor instruction set rules. Our work shows how we process Java bytecodes to the intermediate code, in the Nios II instructions format, and build the control flow and the control dependence graphs. © 2009 IEEE.
Resumo:
Inclut la bibliographie
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the universities, before the start of each school year, is held the distribution of classes among available teachers. Therefore, it is necessary to consider the maximum workweek for each teacher and their preferences for each discipline, to prevent a teacher to give lessons in two separate locations at the same time and to avoid some teachers to become overloaded while others with large clearance. This process, manually performed, is time consuming and does not allow the visualization of other combinations of assignment of teachers to classes, besides being liable to error. This work aims to develop a decision support tool for the problem of assigning teachers to classes in college. The project encompasses the development of a computer program using the concepts of object orientation and a tree search algorithm of a combinatorial nature called Beam Search. The programming language used is Java and the program has a graphical interface for entering and manipulating data of the problem. Once obtained the schedule data of classes and teachers is possible, by means of the tool, perform various simulations and manual adjustments to achieve the final result. It is an efficient method of class scheduling, considering the speed of task execution and the fact that it generates only feasible results