940 resultados para bacteria genome nucleotide usage
Resumo:
The complete genome of an Australian isolate of zantedeschia mild mosaic virus (ZaMMV) causing mosaic symptoms on Alocasia sp. (designated ZaMMVAU) was cloned and sequenced. The genome comprises 9942 nucleotides (excluding the poly-A tail) and encodes a polyprotein of 3167 amino acids. The sequence is most closely related to a previously reported ZaMMV isolate from Taiwan (ZaMMV-TW), with 82 and 86 % identity at the nucleotide and amino acid level, respectively. Unlike the amino acid sequence of ZaMMV-TW, however, ZaMMV-AU does not contain a polyglutamine stretch at the N-terminus of the coat-protein-coding region upstream of the DAG motif. This is the first report of ZaMMV from Australia and from Alocasia sp.
Resumo:
The complete mitochondrial genome of the tarnished plant bug, Lygus lineolaris, comprised 17,027 bp. The genome contained 13 protein coding regions, 22 tRNA genes and 2 ribosomal RNA genes. The gene arrangement corresponded to the common order found among insect mtDNAs which was considered to be the ancestral arrangement. The protein coding genes started with ATN and stopped with TAA or TAG. The nucleotide distribution was 76.0% A + T. The control region contained two repeat regions, one was 24 bp and the other was 161 bp. The Genbank accession for the complete L. lineolaris mt genome is EU401991.
Resumo:
Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants.
Resumo:
Molecular understanding of disease processes can be accelerated if all interactions between the host and pathogen are known. The unavailability of experimental methods for large-scale detection of interactions across host and pathogen organisms hinders this process. Here we apply a simple method to predict protein-protein interactions across a host and pathogen organisms. We use homology detection approaches against the protein-protein interaction databases. DIP and iPfam in order to predict interacting proteins in a host-pathogen pair. In the present work, we first applied this approach to the test cases involving the pairs phage T4 - Escherichia coli and phage lambda - E. coli and show that previously known interactions could be recognized using our approach. We further apply this approach to predict interactions between human and three pathogens E. coli, Salmonella enterica typhimurium and Yersinia pestis. We identified several novel interactions involving proteins of host or pathogen that could be thought of as highly relevant to the disease process. Serendipitously, many interactions involve hypothetical proteins of yet unknown function. Hypothetical proteins are predicted from computational analysis of genome sequences with no laboratory analysis on their functions yet available. The predicted interactions involving such proteins could provide hints to their functions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Luteal insufficiency affects fertility and hence study of mechanisms that regulate corpus luteum (CL) function is of prime importance to overcome infertility problems. Exploration of human genome sequence has helped to study the frequency of single nucleotide polymorphisms (SNPs). Clinical benefits of screening SNPs in infertility are being recognized well in recent times. Examining SNPs in genes associated with maintenance and regression of CL may help to understand unexplained luteal insufficiency and related infertility. Publicly available microarray gene expression databases reveal the global gene expression patterns in primate CL during the different functional state. We intend to explore computationally the deleterious SNPs of human genes reported to be common targets of luteolysin and luteotropin in primate CL Different computational algorithms were used to dissect out the functional significance of SNPs in the luteinizing hormone sensitive genes. The results raise the possibility that screening for SNPs might be integrated to evaluate luteal insufficiency associated with human female infertility for future studies. (C) 2012 Elsevier B.V. All rights reserved,
Resumo:
The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.
Resumo:
Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5'-CU-3' at the 3'-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRp(GTP) structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRp(GTP) structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a check-point to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.
Resumo:
The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as ``Prakriti''. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p <= 1 x 10(-5)) were significantly different between Prakritis, without any confounding effect of stratification, after 10(6) permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India's traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine.
Resumo:
The Asian elephant Elephas maximus and the African elephant Loxodonta africana that diverged 5-7 million years ago exhibit differences in their physiology, behaviour and morphology. A comparative genomics approach would be useful and necessary for evolutionary and functional genetic studies of elephants. We performed sequencing of E. maximus and map to L. africana at similar to 15X coverage. Through comparative sequence analyses, we have identified Asian elephant specific homozygous, non-synonymous single nucleotide variants (SNVs) that map to 1514 protein coding genes, many of which are involved in olfaction. We also present the first report of a high-coverage transcriptome sequence in E. maximus from peripheral blood lymphocytes. We have identified 103 novel protein coding transcripts and 66-long non-coding (lnc)RNAs. We also report the presence of 181 protein domains unique to elephants when compared to other Afrotheria species. Each of these findings can be further investigated to gain a better understanding of functional differences unique to elephant species, as well as those unique to elephantids in comparison with other mammals. This work therefore provides a valuable resource to explore the immense research potential of comparative analyses of transcriptome and genome sequences in the Asian elephant.
Resumo:
DNA possesses the curious ability to conduct charge longitudinally through the π-stacked base pairs that reside within the interior of the double helix. The rate of charge transport (CT) through DNA has a shallow distance dependence. DNA CT can occur over at least 34 nm, a very long molecular distance. Lastly, DNA CT is exquisitely sensitive to disruptions, such as DNA damage, that affect the dynamics of base-pair stacking. Many DNA repair and DNA-processing enzymes are being found to contain 4Fe-4S clusters. These co-factors have been found in glycosylases, helicases, helicase-nucleases, and even enzymes such as DNA polymerase, RNA polymerase, and primase across the phylogeny. The role of these clusters in these enzymes has remained elusive. Generally, iron-sulfur clusters serve redox roles in nature since, formally, the cluster can exist in multiple oxidation states that can be accessed within a biological context. Taken together, these facts were used as a foundation for the hypothesis that DNA-binding proteins with 4Fe-4S clusters utilize DNA-mediated CT as a means to signal one another to scan the genome as a first step in locating the subtle damage that occurs within a sea of undamaged bases within cells.
Herein we describe a role for 4Fe-4S clusters in DNA-mediated charge transport signaling among EndoIII, MutY, and DinG, which are from distinct repair pathways in E. coli. The DinG helicase is an ATP-dependent helicase that contains a 4Fe-4S cluster. To study the DNA-bound redox properties of DinG, DNA-modified electrochemistry was used to show that the 4Fe-4S cluster of DNA-bound DinG is redox-active at cellular potentials, and shares the 80 mV vs. NHE redox potential of EndoIII and MutY. ATP hydrolysis by DinG increases the DNA-mediated redox signal observed electrochemically, likely reflecting better coupling of the 4Fe-4S cluster to DNA while DinG unwinds DNA, which could have interesting biological implications. Atomic force microscopy experiments demonstrate that DinG and EndoIII cooperate at long range using DNA charge transport to redistribute to regions of DNA damage. Genetics experiments, moreover, reveal that this DNA-mediated signaling among proteins also occurs within the cell and, remarkably, is required for cellular viability under conditions of stress. Knocking out DinG in CC104 cells leads to a decrease in MutY activity that is rescued by EndoIII D138A, but not EndoIII Y82A. DinG, thus, appears to help MutY find its substrate using DNA-mediated CT, but do MutY or EndoIII aid DinG in a similar way? The InvA strain of bacteria was used to observe DinG activity, since DinG activity is required within InvA to maintain normal growth. Silencing the gene encoding EndoIII in InvA results in a significant growth defect that is rescued by the overexpression of RNAseH, a protein that dismantles the substrate of DinG, R-loops. This establishes signaling between DinG and EndoIII. Furthermore, rescue of this growth defect by the expression of EndoIII D138A, the catalytically inactive but CT-proficient mutant of EndoIII, is also observed, but expression of EndoIII Y82A, which is CT-deficient but enzymatically active, does not rescue growth. These results provide strong evidence that DinG and EndoIII utilize DNA-mediated signaling to process DNA damage. This work thus expands the scope of DNA-mediated signaling within the cell, as it indicates that DNA-mediated signaling facilitates the activities of DNA repair enzymes across the genome, even for proteins from distinct repair pathways.
In separate work presented here, it is shown that the UvrC protein from E. coli contains a hitherto undiscovered 4Fe-4S cluster. A broad shoulder at 410 nm, characteristic of 4Fe-4S clusters, is observed in the UV-visible absorbance spectrum of UvrC. Electron paramagnetic resonance spectroscopy of UvrC incubated with sodium dithionite, reveals a spectrum with the signature features of a reduced, [4Fe-4S]+1, cluster. DNA-modified electrodes were used to show that UvrC has the same DNA-bound redox potential, of ~80 mV vs. NHE, as EndoIII, DinG, and MutY. Again, this means that these proteins are capable of performing inter-protein electron transfer reactions. Does UvrC use DNA-mediated signaling to facilitate the repair of its substrates?
UvrC is part of the nucleotide excision repair (NER) pathway in E. coli and is the protein within the pathway that performs the chemistry required to repair bulky DNA lesions, such as cyclopyrimidine dimers, that form as a product of UV irradiation. We tested if UvrC utilizes DNA-mediated signaling to facilitate the efficient repair of UV-induced DNA damage products by helping UvrC locate DNA damage. The UV sensitivity of E. coli cells lacking DinG, a putative signaling partner of UvrC, was examined. Knocking out DinG in E. coli leads to a sensitivity of the cells to UV irradiation. A 5-10 fold reduction in the amount of cells that survive after irradiation with 90 J/m2 of UV light is observed. This is consistent with the hypothesis that UvrC and DinG are signaling partners, but is this signaling due to DNA-mediated CT? Complementing the knockout cells with EndoIII D138A, which can also serve as a DNA CT signaling partner, rescues cells lacking DinG from UV irradiation, while complementing the cells with EndoIII Y82A shows no rescue of viability. These results indicate that there is cross-talk between the NER pathway and DinG via DNA-mediated signaling. Perhaps more importantly, this work also establishes that DinG, EndoIII, MutY, and UvrC comprise a signaling network that seems to be unified by the ability of these proteins to perform long range DNA-mediated CT signaling via their 4Fe-4S clusters.
Resumo:
The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNA(Thr), tRNA(Pro), tRNA(Leu) ((CUN))) a tandem duplication of tRNA(Mer) gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNA(Thr)/tRNA(Pro)/tRNA(Leu)/tRNA(Phe). The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAM(Met) and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNA(Met) were first observed in the vertebrate mitochondrial genomes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication(1,2). To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data(3). Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
Resumo:
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
Resumo:
Bream (Abramis brava orientalis) is one of Cyprindae the Caspian Sea and its basin which has a special ecological, biological and economical role. Stock of this fish in the Caspian Sea has reduced during several years for different reason the over fishing, different industrial, agriculture, urban pollution and destroy of the spawning habitat. So that fishery company decided to recover the stock of this fish by the way of artificial reproduction of a Bream couple hunted from south coast of the Caspian Sea (Iran) and setting the fingerling to the rivers and inflow wetlands of the Caspian Sea.This activity has due to 20 tons Bream annual fishing in the Iranian South coast of the Caspian Sea (Gilan province coast and Anzali wetland), The artificial reproduction has decreased Bream population diversity of Caspian sea and Anzali wetland.So it has been declined to improve Braem population diversity by the entrance of Azerbijan republic Bream and encounter to the Caspian sea Bream. Meanwhile there is Bream in the Aras Dam Lake which had been forgotten by the Fishery Company of Iran .For this reason specifications morphometric, meristic and inter species Molecular Genetic have been surveyed in Anzali wetland,Southern coast of Caspian Sea ,Aras Darn Lake and Azerbijan republic during 2003-2005. According to the research on specifications of Morphometric and Meristic of Anzali wetland(120 species),Southern coast of Caspian Sea(90 species), Aras Dam Lake(110 species) and Azerbijan Republic(125 species)has Morphometric and Meristic differences. So that average weight and total length of Anzali wetland Bream respectively was 167 g and 23/76 cm, 102 g and 27/62 cm in Caspian Sea , 461 g and 3 5/38 cm in Aras Darn Lake and 3 4189 g and 15/21 cm in Azerbijan republic (We forced to use 1 year Bream of artificial reproduction in Iran). Also variation coefficient average Morphometric, Morphometric specification Ration and meristic in Anzali wetland Bream was 17/45, 21/56 and 4/63, in Caspian Sea bream 22/58, 15/27 and 3124, in Aras Dam lake Lake 17145. 1.5/27 and 3/57 and Azerbaijan republic Bream 22/29, 19/66 and 4/22. Also Bream of these four regions in general status had Morphometric significant differences based on One Way ANOVA Analysis. Meanwhile Anzali wetland Bream with Caspian Sea Bream from 41 Morphometric surveyed factors in 33 factors, with Aras Darn Lake Bream in 41 factors, with Azerbkjan republic Bream in 41 factors,Caspian Sea Bream with Aras Darn Lake Bream in 36 factors,with Azerbijan republic B ream in 40 factors and A ras Dam L ake Bream with Azerbijan republic Bream in 38 factors had significant statistical differences. These four regions Bream had differences according to the Morphomertric specification ration based on One Way ANOVA Analysis. Also Anzali wetland Bream was surveyed with Caspian Sea Bream from 37 factors i n 27 factors, Anzali wetland Bream with Aras Dam 1ake in 37 factors Anzali wetland Bream with Azerbijan republic Bream in 32 factors,Caspian sea bream with Arsa Dam Lake Bream in 26 factors, Caspian Sea Bream with Azerbijan republic Bream in 29 factors and Aras Dam Lake Bream with Azerbijan republic Bream in 34 factor had significant statistical differences. Based on Meristic factor of four regions bream in 16 surveyed factors in 10 factors had meaningful differences according to the One Way ANOVA Analysis. While Anzali wetland Bream was surveyed with Caspian Sea Bream from in 3 factors,Anzali wetland Bream with Aras Dam lake in 8 factors,Anzali wetland Bream with Azerbijan republic B ream in 6 factors,Caspian Sea bream with Arsa Dam Lake Bream in 6 factors,Caspian sea Bream with Azerbijan republic Bream in 3 factors and Aras Dam Lake Bream with Azerijan republic Bream in 8 factor had significant statistical differences.Meanwihle based on Factor Analysis and Discriminant Breams had differences. Also according to the resrarchs Anzali wetland Bream in 0+ age group till 5+ (6 age groups),Caspian Sea bream in 1+ - 5+(5 age groups),Aras Darn Lake Bream in 1+ - 7+ (7 age groups) and Azerbijan republic Bream for Morphometric and Meristic studies in 1+age group and for molecular Genetic reaserch were in 8+and 9+ age groups. According to the research 4 ecosystems Bream in status of same age, Aras lake Bream were bigger according to weight and length.Also in this research genetic diversity between four population was researched by PCR-RFLP technic on a piece of mitochondrion genome with the length of 3500bp contain of tRNA-leu,tRNA-glu,ND5/6,Cytb. Between 17 used enzyme. 4 enzyme, Dral, Bc11, Haefll and Banff showed diversity in totally 6 composite haplotype was detected. Maximum nucleotide diversity by the value% 0/58 in Azerbijan republic Bream by all haplotype. Aras darn Lake Bream had 2 haplotype and nucleotide diversity of %0/35.Anzali wetland and Caspian Sea Bream had no diversity. Statistical analysis by the usage of Monte Carlo with 1000 repeat showed significant differences between Azerbaijan Bream and other Bream(P<0/0001) but there was no significant difference between 3 regions Bream(P>0/5).
Resumo:
SNPNB is a user-friendly and platform-independent application for analyzing Single Nucleotide Polymorphism NeighBoring sequence context and nucleotide bias patterns, and subsequently evaluating the effective SNP size for the bias patterns observed from the whole data. It was implemented by Java and Perl. SNPNB can efficiently handle genome-wide or chromosome-wide SNP data analysis in a PC or a workstation. It provides visualizations of the bias patterns for SNPs or each type of SNPs.