885 resultados para arbitrary sharing configurations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. In this paper we prove the existence of central con gurations of the n + 2{body problem where n equal masses are located at the vertices of a regular n{gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n{gon passing through its center. Here this kind of central con gurations is called bi{pyramidal central con gurations. In particular, we prove that if the masses mn+1 and mn+2 and their positions satisfy convenient relations, then the con guration is central. We give explicitly those relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we prove that there are only two different classes of central configura- tions with convenient masses located at the vertices of two nested regular tetrahedra: either when one of the tetrahedra is a homothecy of the other one, or when one of the tetrahedra is a homothecy followed by a rotation of Euler angles = = 0 and = of the other one. We also analyze the central configurations with convenient masses located at the vertices of three nested regular tetrahedra when one them is a homothecy of the other one, and the third one is a homothecy followed by a rotation of Euler angles = = 0 and = of the other two. In all these cases we have assumed that the masses on each tetrahedron are equal but masses on different tetrahedra could be different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider 2n masses located at the vertices of two nested regular polyhedra with the same number of vertices. Assuming that the masses in each polyhedron are equal, we prove that for each ratio of the masses of the inner and the outer polyhedron there exists a unique ratio of the length of the edges of the inner and the outer polyhedron such that the configuration is central.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. In this paper we study the relative equilibria and their stability for a system of three point particles moving under the action of a Lennard{Jones potential. A central con guration is a special position of the particles where the position and acceleration vectors of each particle are proportional, and the constant of proportionality is the same for all particles. Since the Lennard{Jones potential depends only on the mutual distances among the particles, it is invariant under rotations. In a rotating frame the orbits coming from central con gurations become equilibrium points, the relative equilibria. Due to the form of the potential, the relative equilibria depend on the size of the system, that is, depend strongly of the momentum of inertia I. In this work we characterize the relative equilibria, we nd the bifurcation values of I for which the number of relative equilibria is changing, we also analyze the stability of the relative equilibria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through this article, we propose a mixed management of patients' medical records, so as to share responsibilities between the patient and the Medical Practitioner by making Patients responsible for the validation of their administrative information, and MPs responsible for the validation of their Patients' medical information. Our proposal can be considered a solution to the main problem faced by patients, health practitioners and the authorities, namely the gathering and updating of administrative and medical data belonging to the patient in order to accurately reconstitute a patient's medical history. This method is based on two processes. The aim of the first process is to provide a patient's administrative data, in order to know where and when the patient received care (name of the health structure or health practitioner, type of care: out patient or inpatient). The aim of the second process is to provide a patient's medical information and to validate it under the accountability of the Medical Practitioner with the help of the patient if needed. During these two processes, the patient's privacy will be ensured through cryptographic hash functions like the Secure Hash Algorithm, which allows pseudonymisation of a patient's identity. The proposed Medical Record Search Engines will be able to retrieve and to provide upon a request formulated by the Medical ractitioner all the available information concerning a patient who has received care in different health structures without divulging the patient's identity. Our method can lead to improved efficiency of personal medical record management under the mixed responsibilities of the patient and the MP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the spin dynamics of quasi-one-dimensional F=1 condensates both at zero and finite temperatures for arbitrary initial spin configurations. The rich dynamical evolution exhibited by these nonlinear systems is explained by surprisingly simple principles: minimization of energy at zero temperature and maximization of entropy at high temperature. Our analytical results for the homogeneous case are corroborated by numerical simulations for confined condensates in a wide variety of initial conditions. These predictions compare qualitatively well with recent experimental observations and can, therefore, serve as a guidance for ongoing experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several Locus-Specific DataBases (LSDBs) have recently been approached by larger, more general data repositories (including NCBI and UCSC) with the request to share the DNA variant data they have collected. Within the Human Genome Variation Society (HGVS) a document was generated summarizing the issues related to these requests. The document has been circulated in the HGVS/LSDB community and was discussed extensively. Here we summarize these discussions and present the concluded recommendations for LSDB data sharing with central repositories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of TeX = 4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.