992 resultados para ajoite, kinoite, stringhamite, cupric ions, healing mineral, vibrational spectroscopy
Resumo:
Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a chemical step resulting in the formation of 5,6-dihydroxyindoline quinone as final product. This oxidation process has also been investigated by vibrational spectroscopy.
Resumo:
Synthetic corundum (Al2O3), gibbsite (Al(OH)(3)), bayerite (Al(OH)(3)), boehmite (AlO(OH)) and pseudoboehmite (AlO(OH)) have been studied by high resolution XPS. The chemical compositions based on the XPS survey scans were in good agreement with the expected composition. High resolution A12p scans showed no significant changes in binding energy, with all values between 73.9 and 74.4 eV. Only bayerite showed two transitions, associated with the presence of amorphous material in the sample. More information about the chemical and crystallographic environment was obtained from the 0 Is high resolution spectra. Here a clear distinction could be made between oxygen in the crystal structure, hydroxyl groups and adsorbed water. Oxygen in the crystal structure was characterised by a binding energy of about 530.6 eV in all minerals. Hydroxyl groups, present either in the crystal structure or on the surface, exhibited binding energies around 531.9 eV, while water on the surface showed binding energies around 533.0 eV. A distinction could be made between boehmite and pseudoboehmite based on the slightly lower ratio of oxygen to hydroxyl groups and water in pseudoboehmite. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The goal set for this work was to synthesize and to characterize new iron and copper complexes with the Schiff base 3-MeOsalen and ligands of biological relevance, whose formulas are [Fe(3-MeOsalen)NO2], [Fe(3-MeOsalen)(etil2-dtc)], [Fe(3-MeOsalen)NO] and Na[Cu(3-MeOsalen)NO2]. The compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). From the analysis of infrared spectra, they proved to formation of precursor complexes, as evidenced by changes in the vibrationals frequencies ν(C=N) e ν(C-O) and the emergence of vibrationals modes metal-oxygen and metal-nitrogen. For nitro complexes of iron and copper were observed ν(NO2)ass around 1300 cm-1 e ν(NO2)sim in 1271 cm-1 , indicating that the coordination is done via the nitrogen atom. The complex spectrum [Fe(3-MeOsalen)(etil2-dtc)] exhibited two bands, the ν(C-NR2) in 1508 cm-1 e ν(C-S) in 997 cm-1 , the relevant vibrational modes of coordinating ligand in the bidentate form. For the complex [Fe(3-MeOsalen)NO] was observed a new intense band in 1670 cm-1 related to the ν(NO). With the electronic spectra, the formation of complexes was evidenced by shifts of bands intraligands transitions and the emergence of new bands such as LMCT (p Cl- d* Fe3+) in [Fe(3-MeOsalen)Cl] and the d-d in [Cu(3-MeOsalen)H2O]. As for the [Fe(3-MeOsalen)NO2] has highlighted the absence of LMCT band present in the precursor complex as for the [Cu(3-MeOsalen)NO2] found that the displacement of the band hipsocrômico d-d on 28 nm. The electronic spectrum of [Fe(3-MeOsalen)(etil2-dtc)] presented LMCT band shifts and changes in intraligantes transitions. With regard to [Fe(3-MeOsalen)NO], revealed a more energetic transitions intraligands regions from the strong character π receiver NO and MLCT band of transition dπFe(II)π*(NO).
Resumo:
This paper reports the thermomechanical sensitivity of bimaterial cantilevers over a mid-infrared (IR) spectral range (5-10 µm) that is critical both for chemical analysis via vibrational spectroscopy and for direct thermal detection in the 300-700 K range. Mechanical bending sensitivity and noise were measured and modeled for six commercially available microcantilevers, which consist of either an aluminum film on a silicon cantilever or a gold film on a silicon nitride cantilever. The spectral sensitivity of each cantilever was determined by recording cantilever deflection when illuminated with IR light from a monochromator. Rigorous modeling and systematic characterization of the optical system allowed for a quantitative estimate of IR energy incident upon the cantilever. Separately, spectral absorptance of the cantilever was measured using Fourier transform infrared (FT-IR) microscopy, which was compared with analytical models of radiation onto the cantilever and heat flow within the cantilever. The predictions of microcantilever thermomechanical bending sensitivity and noise agree well with measurements, resulting in a ranking of these cantilevers for their potential use in IR measurements.
Resumo:
In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.
Resumo:
The study of the spectroscopic phenomena in organic solids, in combination with other techniques, is an effective tool for the understanding of the structural properties of materials based on these compounds. This Ph.D. work was dedicated to the spectroscopic investigation of some relevant processes occurring in organic molecular crystals, with the goal of expanding the knowledge on the relationship between structure, dynamics and photoreactivity of these systems. Vibrational spectroscopy has been the technique of choice, always in combination with X-ray diffraction structural studies and often the support of computational methods. The vibrational study of the molecular solid state reaches its full potential when it includes the low-wavenumber region of the lattice-phonon modes, which probe the weak intermolecular interactions and are the fingerprints of the lattice itself. Microscopy is an invaluable addition in the investigation of processes that take place in the micro-meter scale of the crystal micro-domains. In chemical and phase transitions, as well as in polymorph screening and identification, the combination of Raman microscopy and lattice-phonon detection has provided useful information. Research on the fascinating class of single-crystal-to-single-crystal photoreactions, has shown how the homogeneous mechanism of these transformations can be identified by lattice-phonon microscopy, in agreement with the continuous evolution of their XRD patterns. On describing the behavior of the photodimerization mechanism of vitamin K3, the focus was instead on the influence of its polymorphism in governing the product isomerism. Polymorphism is the additional degree of freedom of molecular functional materials, and by advancing in its control and properties, functionalities can be promoted for useful applications. Its investigation focused on thin-film phases, widely employed in organic electronics. The ambiguities in phase identification often emerging by other experimental methods were successfully solved by vibrational measurements.
Resumo:
Considering several reports about the similarity between the chemical compositions of the mineral trioxide aggregate (MTA) and Portland cement (PC), the subject of this investigation was to analyze the behavior of dog dental pulp after pulpotomy and direct pulp protection with these materials. After pulpotomy, the pulp stumps of 26 roots of dog teeth were protected with MTA or PC. Sixty days after treatment, the animal was sacrificed and the specimens removed and prepared for histomorphological analysis. There was a complete tubular hard tissue bridge in almost all specimens. In conclusion, MTA and PC show similar comparative results when used in direct pulp protection after pulpotomy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Periodontal therapy using the combination of platelet-rich plasma (PRP) and different grafting materials has been suggested as a modality to enhance the outcome of regenerative surgery. In most clinical studies, a barrier membrane was used to cover the defects, and thus, the effects of PRP may have been masked by the effects of the barrier. The data from controlled clinical studies evaluating the effect of regenerative therapy using various grafting materials with or without PRP are still limited. The purpose of this study was to clinically compare the healing of intrabony defects treated with either a combination of an anorganic bovine bone mineral (ABBM) and PRP to those obtained with ABBM alone. METHODS: Thirty patients with advanced chronic periodontal disease and displaying one intrabony defect were randomly treated with PRP + ABBM or ABBM alone. The following clinical parameters were evaluated at baseline and 1 year after treatment: plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS: No statistical significant differences in any of the investigated parameters between the two groups were observed at baseline. Healing was uneventful in all patients. In the PRP + ABBM group, mean PD decreased from 8.6 +/- 1.8 mm to 3.4 +/- 1.4 mm (P <0.001) and mean CAL changed from 9.9 +/- 1.7 mm to 5.3 +/- 1.8 mm (P <0.001). In the ABBM group, mean PD decreased from 8.5 +/- 2.0 mm to 3.2 +/- 1.3 mm (P <0.001) and mean CAL changed from 9.6 +/- 1.9 mm to 4.9 +/- 1.5 mm (P <0.001). CAL gains >or=3 mm were measured in 80% (12 of 15 defects) of cases treated with PRP + ABBM and in 87% (13 of 15 defects) of cases treated with ABBM alone. No statistically significant differences in any of the investigated parameters were observed between the two groups at the 1-year reevaluation. CONCLUSIONS: Within the limits of the present study, it can be concluded that 1) at 1 year after regenerative surgery with PRP + ABBM and ABBM alone, significant PD reductions and CAL gains were found, and 2) the use of PRP failed to improve the results obtained with ABBM alone.
Resumo:
BACKGROUND Regenerative periodontal surgery using the combination of enamel matrix derivative (EMD) and natural bone mineral (NBM) with and without addition of platelet-rich plasma (PRP) has been shown to result in substantial clinical improvements, but the long-term effects of this combination are unknown. METHODS The goal of this study was to evaluate the long-term (5-year) outcomes after regenerative surgery of deep intrabony defects with either EMD + NBM + PRP or EMD + NBM. Twenty-four patients were included. In each patient, one intrabony defect was randomly treated with either EMD + NBM + PRP or EMD + NBM. Clinical parameters were evaluated at baseline and 1 and 5 years after treatment. The primary outcome variable was clinical attachment level (CAL). RESULTS The sites treated with EMD + NBM + PRP demonstrated a mean CAL change from 10.5 ± 1.6 to 6.0 ± 1.7 mm (P <0.001) at 1 year and 6.2 ± 1.5 mm (P <0.001) at 5 years. EMD + NBM-treated defects showed a mean CAL change from 10.6 ± 1.7 to 6.1 ± 1.5 mm (P <0.001) at 1 year and 6.3 ± 1.4 mm (P <0.001) at 5 years. At 1 year, a CAL gain of ≥4 mm was measured in 83% (10 of 12) of the defects treated with EMD + NBM + PRP and in 100% (all 12) of the defects treated with EMD + NBM. Compared to baseline, in both groups at 5 years, a CAL gain of ≥4 mm was measured in 75% (nine of 12 in each group) of the defects. Four sites in the EMD + PRP + NBM group lost 1 mm of the CAL gained at 1 year. In the EMD + NBM group, one defect lost 2 mm and four other defects lost 1 mm of the CAL gained at 1 year. No statistically significant differences in any of the investigated parameters were observed between the two groups. CONCLUSIONS Within their limits, the present results indicate that: 1) the clinical outcomes obtained with both treatments can be maintained up to a period of 5 years; and 2) the use of PRP does not appear to improve the results obtained with EMD + NBM.
Resumo:
The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1478-1487, 2015.
Resumo:
Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. Results: NBF was 14.3%+/- 1.8% for the control and nonsignificantly lower (12.6%+/- 1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%+/- 2.7%) were significantly higher for the test compared with control (19.3%+/- 2.5%) (p < 0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p = 0.137). Conclusions: NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.
Resumo:
There are some interesting connections between the theory of quantum computation and quantum measurement. As an illustration, we present a scheme in which an ion trap quantum computer can be used to make arbitrarily accurate measurements of the quadrature phase variables for the collective vibrational motion of the ion. We also discuss some more general aspects of quantum computation and measurement in terms of the Feynman-Deutsch principle.