988 resultados para additional modulation
Resumo:
1. 1. An increase in the oxidation of succinate by hepatic mitochondria in rats exposed to hypoxia (O2-N2; 1:9, v/v) or hypobaria (0.5 atm) was observed which appears to be due to modification of the activity of the rate-limiting succinate dehydrogenase [succinate: (acceptor) oxidoreductase, EC 1.3.99.1].
Resumo:
Background Although guidelines suggest that vigorous physical activity (PA) confers “extra” benefits compared with those from moderate-intensity activity alone, the magnitude of this additional benefit is unclear. The aim was to compare the reduction in risk of hypertension (HT) and depressive symptoms (DS) for 12 yr in middle-age women who reported (a) only moderate-intensity PA (MOPA) and (b) a combination of moderate and vigorous PA (MVPA), after controlling for overall volume of activity. Methods The study involved 11,285 participants in the Australian Longitudinal Study on Women’s Health, who completed surveys in 1998 (age = 46–52 yr), 2001, 2004, 2007, and 2010. Generalized estimating equation models (with 3-yr time lag) were used to examine the relationship between PA in seven categories from 0 to >2000 MET·min·wk−1 and occurrence of HT and DS for women who reported MOPA or MVPA. Results For HT, risk was slightly lower for MVPA than for MOPA across the entire range of PA levels, but this difference was only significant at the highest PA level (>2000; odds ratio [OR] = 0.80 MOPA and 0.56 MVPA). For DS, OR values were similar in both groups up to 500 MET·min·wk−1, then slightly lower for MVPA than for MOPA at higher PA levels. Again, this difference was only significant at the highest PA level (>2000; OR = 0.57 MOPA and 0.42 MVPA). OR values were slightly attenuated in adjusted models. Conclusions Doing both vigorous and moderate activity does not have significant additional benefits in terms of HT and DS, above those from moderate-intensity activity alone, except at very high levels of PA.
Resumo:
The spectral energy associated with the carrier and sidebands of naturally sampled carrier based PWM can be spread by randomising the carrier (switch) half-period Tc = 1/2fc. So long as the switch duty cycle each period still correctly reflects the value of the modulating fundamental waveform as sampled during that switch period, then the fundamental component will remain undistorted. Natural sampling will ensure this occurs. Carrier based PWM can be extended to (m+1) level multilevel converter waveform generation by creating m triangular carriers, each with an equal 2*pi/m phase displacement. Alternatively the carrier disposition strategy calls for m amplitude displaced triangular carriers, each of amplitude 1/m and frequency mfc. Randomising these carrier sub-periods T0> = 1/2mfc is shown to generate (m+ 1) level PWM waveforms where the first (m-1) carrier groups are cancelled, while the remaining carrier and sidebands at multiples of mfc are spectrally spread. Numerous five level simulation and experimentally gathered randomised PWM waveforms are presented, showing the effects of the variation of the degree of randomisation, modulation depth and pulse number.
Resumo:
An alternative approach to digital PWM generation uses an accumulator rather than a counter to generate the carrier. This offers several advantages. The resolution and gain of the pulse width modulator remain constant regardless of the module clock frequency and PWM output frequency. The PWM resolution also becomes fixed at the register width. Even at high PWM frequencies, the resolution remains high when averaged over a number of PWM cycles. An inherent dithering of the PWM waveform introduced over successive cycles blurs the switching spectra without distorting the modulating waveform. The technique also lends itself to easily generating several phase shifted PWM waveforms suitable for multilevel converter modulation. Several example waveforms generated using both simulation and FPGA hardware are presented.
Resumo:
This paper proposes a novel modulation strategy for a phase controlled Capacitor-Inductor-Capacitor (CLC) Resonant Dual Active Bridge (RDAB). The proposed modulation strategy improves the soft turn-on, Zero-Current-Switching (ZCS) and Zero-Voltage-Switching (ZVS) range of the converter while only minimally increasing the required reactive currents in the ac link. A mathematical analysis of the proposed modulation scheme is presented along with a theoretical loss comparison between several modulation strategies. The proposed modulation strategy was implemented and the experimental results are presented.
Resumo:
Isolated nuclei from differentiating cultures of Nicotiana sanderae showed increased levels of RNA polymerase activity as compared to the nuclei from callus cultures. The RNA synthetic activity was dependent on nucleotide triphosphates and Mg2+ and was destroyed by RNase. Maximum activity was obtained in the presence of 50 mM (NH4)2 SO4 and α-amanitin inhibited 40% and 55% of the activity in the nuclei from callus and differentiating tissue respectively. The nuclei from differentiating tissue elicited a 3-fold increase in RNA polymerase I and a 4-fold augmentation in RNA polymerase II activities.
Resumo:
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.
Resumo:
This paper presents a systematic method of investigating the existence of limit cycle oscillations in feedback systems with combined integral pulse frequency-pulse width (IPF-P/V) modulation. The method is based on the non-linear discrete equivalence of the continuous feedback system containing the IPF-PW modulator.
Resumo:
Microwave modulation has been achieved by using thin-film amorphous-semiconductor switches made of ternary chalcogenides. X-band microwaves were modulated by a threshold switch at frequencies varying from 100 Hz to 1 MHz, with modulation efficiencies comparable to siliconp¿i¿n diodes. The insertion loss was 0.5 to 0.6 dB and the isolation was 18 dB at 100 mA operating current. Possible applications this method are discussed.
Resumo:
The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.
Resumo:
The binding sites in hen egg-white lysozyme for neutral bromophenol red (BPR) and ionized bromophenol blue (BPB) have been characterized at 2 Å resolution. In either case, the dye-bound enzyme is active against the polysaccharide, but not against the cell wall. Both binding sites are outside, but close to, the hexasaccharide binding cleft in the enzyme. The binding site of BPR made up of Arg5, Lys33, Phe34, Asn37, Phe38, Ala122, Trp123 and possibly Arg125, is dose to subsite F while that of BPB made up of Tyr20, Arg21, Asn93, Lys96, Lys97 and Ser100, is close to subsites A and B. The binding sites of the neutral dye and the ionized dye are thus spatially far apart. The peptide component of the bacterial cell wall probably interacts with these cells during enzyme action. Such interactions are perhaps necessary for appropriately positioning the enzyme molecule on the bacterial cell wall.
Resumo:
A specific radioimmunoassay procedure was developed to monitor the plasma concentrations of thiamin-binding protein, a minor yolk constituent of the chicken egg. By using this sensitive assay, the kinetics of oestrogen-induced elaboration of this specific protein in immature chicks was investigated. After a single injection of the steroid hormone, with an initial lag period of 4–5h the thiamin-binding protein rapidly accumulated in the plasma, attaining peak concentrations around 75h and declining thereafter. A 4-fold amplification of the response was noticed during the secondary stimulation, and this increased to 9-fold during the tertiary stimulation with the steroid hormone. The magnitude of the response was dependent on the hormone dose, and the initial latent period and the duration of the ascending phase of induction were unchanged for the hormonal doses tested during both the primary and secondary stimulations. The circulatory half-life of the protein was 6h as calculated from the measurement of the rate of disappearance of the exogenously administered 125I-labelled protein. Simultaneous administration of progesterone, dihydrotestosterone or corticosterone did not alter the pattern of induction. On the other hand, hyperthyroidism markedly decreased the oestrogenic response, whereas propylthiouracil-induced hypothyroidism had the opposite effect. The anti-oestrogen E- and Z-clomiphene citrates, administered 30min before oestrogen, effectively blocked the hormonal induction. α-Amanitin and cycloheximide administered along with or shortly after the sex steroid severely curtailed the protein elaboration. A comparison of the kinetics of induction of thiamin- and riboflavin-binding proteins by oestrogen revealed that, beneath an apparent similarity, a clear-cut difference exists between the two vitamin-binding proteins, particularly with regard to hormonal dose-dependent sensitivity of induction and the half-life in circulation. The steroid-mediated elaboration of the two yolk proteins thus appears to be not strictly co-ordinated, despite several common regulatory features underlying their induction.
Hormonal modulation of riboflavin carrier protein secretion by immature rat Sertoli cells in culture
Resumo:
We report here that a protein species with biochemical and immunological similarity with chicken egg riboflavin carrier protein (RCP) is synthesized and secreted by immature rat Sertoli cells in culture. When quantitated by a specific heterologous radioimmunoassay, optimal concentrations of FSH (25 ng/ml) brought about 3-fold stimulation of RCP secretion. FSH, in the presence of testosterone (10−6 M) brought about 6-fold stimulation of secretion of RCP over the control cultures which were maintained in the absence of these two factors. The aromatase inhibitor (1,4,6-androstatrien-3,17-dione) curtailed 85% of the enhanced secretion of RCP, suggesting that the hormonal stimulation is mediated through in situ synthesized estrogen and this could be confirmed with exogenous estradiol-17 β which brought about 3 — fold enhancement of secretion of RCP at a concentration of 10−6 M. When tamoxifen (10 μM) was added along with FSH and testosterone, there was 75% decrease in the enhanced secretion of RCP. Addition of this anti-estrogen together with exogenous estradiol resulted in 55% decrease in elevated levels of RCP. Cholera toxin (1 μg/ml) and 8-bromo-cyclic AMP (0.5 mM) mimicked the action of FSH on the secretion of RCP thus suggesting that FSH stimulation of RCP production may be mediated through cyclic AMP. These findings suggest that estrogen mediates RCP induction in hormonally stimulated sertoli cells presumably to function as the carrier of riboflavin to the developing germ cells through blood-testis barrier in rodents.
Resumo:
The characteristics of drug addiction include compulsive drug use despite negative consequences and re-occurring relapses, returns to drug use after a period of abstinence. Therefore, relapse prevention is one of the major challenges for the treatment of drug addiction. There are three main factors capable of inducing craving for drugs and triggering relapse long after cessation of drug use and dissipation of physical withdrawal signs: stress, re-exposure to the drug, and environmental stimuli (cues) that have been previously associated with drug use. The neurotransmitters dopamine and glutamate have been implicated in the modulation of drug-seeking behavior. The aim of this project was to examine the role of glutamatergic neurotransmission in relapse triggered by conditioned drug-associated stimuli. The focus was on clarifying whether relapse to drug seeking can be attenuated by blockade of glutamate receptors. In addition, as the nucleus accumbens has been proposed to participate in the modulation of drug-seeking behavior, the effects of glutamate receptor blockade in this brain structure on cue-induced relapse were investigated. The studies employed animals models in which rats were trained to press a lever in a test cage to obtain alcohol or intravenous cocaine. Drug availability was paired with distinct olfactory, auditory, or visual stimuli. This phase was followed by extinction training, during which lever presses did not result in the presentation of the drug or the drug-associated stimuli. Extinction training led to a gradual decrease in the number of lever presses during test sessions. Relapse was triggered by presenting the rats with the drug-associated stimuli in the absence of alcohol or cocaine. The drug-associated stimuli were alone capable of inducing resumption of lever pressing and maintaining this behavior during repeated testing. The number of lever presses during a session represented the intensity of drug-seeking and relapse behavior. The results suggest that glutamatergic neurotransmission is involved in the modulation of drug-seeking behavior. Both alcohol and cocaine relapse were attenuated by systemic pretreatment with glutamate receptor antagonists. However, differences were found in the ability of ionotropic AMPA/kainate and NMDA receptor antagonists to regulate drug-seeking behavior. The AMPA/kainate antagonists CNQX and NBQX, and L-701,324, an antagonist with affinity for the glycine site of the NMDA receptor, attenuated cue-induced drug seeking, whereas the competitive NMDA antagonist CGP39551 and the NMDA channel blocker MK-801 were without effect. MPEP, an antagonist at metabotropic mGlu5 glutamate receptors, also decreased drug seeking, but its administration was found to lead to conditioned suppression of behavior during subsequent treatment sessions, suggesting that MPEP may have undesirable side effects. The mGluR2/3 agonist LY379268 and the mGluR8 agonist (S)-3,4-DCPG decreased both cue-induced relapse to alcohol drinking and alcohol consumption. Control experiments showed however that administration of the agonists was accompanied by motor suppression limiting their usefulness. Administration of the AMPA/kainate antagonist CNQX, the NMDA antagonist D-AP5, and the mGluR5 antagonist MPEP into the nucleus accumbens resulted also in a decrease in drug-seeking behavior, suggesting that the nucleus accumbens is at least one of the anatomical sites regulating drug seeking and mediating the effects of glutamate receptor antagonists on this behavior.