150 resultados para Vines
Resumo:
Mestrado Vinifera Euromaster - Instituto Superior de Agronomia - UL
Resumo:
The aim of this work was to analyse the effects of leaf removal on Touriga Nacional berry temperature and consequent thermal efficiency for anthocyanins biosynthesis. The field experiment was located at Dão Wine Research Station, Nelas, Portugal in an adult vineyard planted with North-South oriented rows, with the red grape variety Touriga Nacional grafted on 110R rootstock. The vines were trained on a vertical shoot positioning, spur-pruned on a bilateral Royat cordon system and deficit irrigated (50% ETc). The experimental design was a randomized complete block design with four replications of twelve vines per elemental plot, and the following two treatments: basal leaf removal (LR) and a control non-defoliated (ND). Berry temperature (Tb) was measured continuously during the second half (3rd to 19th September) of the 2009 ripening period using two-junction, fine-wires copper-constantan thermocouples manually inserted into the berries and connected to a data logger. A sample of clusters located in different canopy positions (exposed and internal; facing East and West) of 4 vines per treatment were used. To quantify the effect of Tb on anthocyanins biosynthesis, the berry hourly mean temperatures were converted into normal heat hours (NHH) and accumulated per day (NHHd) and per monitoring period (NHHc). For quantification of thermal requirements for anthocyanins synthesis and accumulation, a minimum of 10°C, a maximum of 35°C, and an optimum of 26°C were used. Meteorological variables were measured at an automatic weather station installed within the experimental plot. For all days of the monitoring period, daily average berry temperature (dTb) of all monitored berries was lower in ND treatment than in LR, being the maximum differences between treatments registered on 11th September. The highest dTb differences between treatments were registered on the clusters located at the west side of the canopy on 7th September while dTb of the clusters located in the centre of the canopy was less affected by leaf removal. The control non-defoliated treatment (ND) presented a significantly higher NHHc than that of LR being the higher differences presented by the clusters located in the west side. The lowest differences in NHHc were obtained in the clusters located in the centre of the canopy. Our results show that the thermal efficiency for berry anthocyanins accumulation was significantly affected by leaf removal and that this effect was dependent of the meteorological conditions, time of the day and berry/cluster location into the vine canopy.
Resumo:
The benefits of calcium applications pre and postharvest on fruit storage ability have been mentioned in the bibliography. It was objective of this work to study the effect of calcium preharvest application in two different forms and calcium chloride application postharvest on 'Hayward' kiwifruit storage ability. Kiwifruit vines were sprayed with 0.03% CaCl2 or 0.03% CaO at one, three and four months before harvest. The control did not have any treatment. After harvest, half fruits were dipped for 2 min in a solution of 1% CaCl2, left to dry and stored at 0 degrees C. The other half was stored at the same temperature without any treatment. The commercial yield was not affected by treatments. During storage, fruits dipped in 1% CaCl2 softened slower and than fruits not treated. Weight loss was higher in fruits treated with CaO preharvest. SSC showed a significant decrease in fruits sprayed with CaO from 4 to 6 months storage. This work suggests that immersion of kiwifruit in 1% CaCl2 postharvest benefits storage life capacity; preharvest spraying with CaCl2 seems to be better than with CaO. However, we have to try higher calcium concentrations in order to get better results in storage ability but, without causing toxicity on the vines.
Resumo:
The objective of this research was to study the effect of complementary pollination on kiwifruit production and quality. For 3 years, complementary application of wet or dry pollen have been done at different stages of flower opening on vines in the Portuguese regions of Entre-Douro e Minho and Beira Litoral. Commercial production data were collected and fruit quality attributes were measured at harvest. Complementary pollination did not affect fruit soluble solids content or firmness in any year, and was beneficial for fruit size and commercial production in the third year only, showing that it is important in some conditions, when natural pollination is inadequate.
Resumo:
It is well known that calcium increases storage life of many fruits. This study investigated the effect of vine calcium application, as well as postharvest application on storage behaviour of 'Hayward' kiwifruit. Three applications of 0.03% CaCl2 or CaO were made in June, July and September. After harvest half of the fruit from sprayed vines were dipped in a solution of 2% CaCl2; the other fruit were untreated. All fruit were then stored at 0 degrees C and relative humidity of about 90-95%. Results for fruit of the size range 85-105 g are discussed. Kiwifruit dipped in 2% CaCl2 postharvest maintained higher firmness through storage than undipped fruit, but soluble solids content was only slightly lower after storage. This suggests that postharvest dipping of kiwifruit in 2% CaCl2 benefits storage life. The concentrations of 0.03% CaCl2 (Antistip) or 0.03% CaO (Chelal) used in vine applications seem to be too low and higher concentrations should be tried.
Experimental and modeling studies of forced convection storage and drying systems for sweet potatoes
Resumo:
Sweet potato is an important strategic agricultural crop grown in many countries around the world. The roots and aerial vine components of the crop are used for both human consumption and, to some extent as a cheap source of animal feed. In spite of its economic value and growing contribution to health and nutrition, harvested sweet potato roots and aerial vine components has limited shelf-life and is easily susceptible to post-harvest losses. Although post-harvest losses of both sweet potato roots and aerial vine components is significant, there is no information available that will support the design and development of appropriate storage and preservation systems. In this context, the present study was initiated to improve scientific knowledge about sweet potato post-harvest handling. Additionally, the study also seeks to develop a PV ventilated mud storehouse for storage of sweet potato roots under tropical conditions. In study one, airflow resistance of sweet potato aerial vine components was investigated. The influence of different operating parameters such as airflow rate, moisture content and bulk depth at different levels on airflow resistance was analyzed. All the operating parameters were observed to have significant (P < 0.01) effect on airflow resistance. Prediction models were developed and were found to adequately describe the experimental pressure drop data. In study two, the resistance of airflow through unwashed and clean sweet potato roots was investigated. The effect of sweet potato roots shape factor, surface roughness, orientation to airflow, and presence of soil fraction on airflow resistance was also assessed. The pressure drop through unwashed and clean sweet potato roots was observed to increase with higher airflow, bed depth, root grade composition, and presence of soil fraction. The physical properties of the roots were incorporated into a modified Ergun model and compared with a modified Shedd’s model. The modified Ergun model provided the best fit to the experimental data when compared with the modified Shedd’s model. In study three, the effect of sweet potato root size (medium and large), different air velocity and temperature on the cooling/or heating rate and time of individual sweet potato roots were investigated. Also, a simulation model which is based on the fundamental solution of the transient equations was proposed for estimating the cooling and heating time at the centre of sweet potato roots. The results showed that increasing air velocity during cooling and heating significantly (P < 0.05) affects the cooling and heating times. Furthermore, the cooling and heating times were significantly different (P < 0.05) among medium and large size sweet potato roots. Comparison of the simulation results with experimental data confirmed that the transient simulation model can be used to accurately estimate the cooling and heating times of whole sweet potato roots under forced convection conditions. In study four, the performance of charcoal evaporative cooling pad configurations for integration into sweet potato roots storage systems was investigated. The experiments were carried out at different levels of air velocity, water flow rates, and three pad configurations: single layer pad (SLP), double layers pad (DLP) and triple layers pad (TLP) made out of small and large size charcoal particles. The results showed that higher air velocity has tremendous effect on pressure drop. Increasing the water flow rate above the range tested had no practical benefits in terms of cooling. It was observed that DLP and TLD configurations with larger wet surface area for both types of pads provided high cooling efficiencies. In study five, CFD technique in the ANSYS Fluent software was used to simulate airflow distribution in a low-cost mud storehouse. By theoretically investigating different geometries of air inlet, plenum chamber, and outlet as well as its placement using ANSYS Fluent software, an acceptable geometry with uniform air distribution was selected and constructed. Experimental measurements validated the selected design. In study six, the performance of the developed PV ventilated system was investigated. Field measurements showed satisfactory results of the directly coupled PV ventilated system. Furthermore, the option of integrating a low-cost evaporative cooling system into the mud storage structure was also investigated. The results showed a reduction of ambient temperature inside the mud storehouse while relative humidity was enhanced. The ability of the developed storage system to provide and maintain airflow, temperature and relative humidity which are the key parameters for shelf-life extension of sweet potato roots highlight its ability to reduce post-harvest losses at the farmer level, particularly under tropical climate conditions.
Resumo:
El creciente interés de China por África ha modificado y estructurado una nueva política exterior, en donde el fortalecimiento de las relaciones políticas y económicas se ve ligado al uso de la diplomacia cultural como una herramienta de atracción. Teniendo en cuenta lo anterior, la presente investigación tiene por objetivo principal indagar cómo China construye una identidad a través de su diplomacia cultural en Angola, demostrando así, que este país utiliza sus costumbres, principios y normas para establecer una identidad de rol en la que se asume como una potencia que debe cooperar. No obstante, sus intereses van más allá de la cooperación al profundizar en relaciones de confianza que lo beneficien política y económicamente. Haciendo un uso del concepto de Imperialismo, la investigación mostrará las limitaciones y los vacíos de la noción de identidad para explicar acciones chinas en Angola, mostrando cómo se hacen uso de herramientas imperialistas para un beneficio propio.
Resumo:
At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
ABSTRACT The ground pearl, Eurhizococcus brasiliensis, is considered an important pest of vineyards in southern Brazil, with affected plants exhibiting leaf chlorosis, reduction in vigor, fading, and death. This study evaluated the quality of hardwood cuttings produced from plants infected (I) and not infected (NI) by ground pearl. ?Paulsen 1103? (Vitis berlandieri × Vitis rupestris) plants were grown for 29 months in brick-built raised beds either infested or not infested by ground pearl; then, 12 one-year-old branches with a maximum of 12 buds each were cut from each plant, subdivided into three portions (4 buds cutting-1), and subjected to destructive and nondestructive testing. Destructive testing comprised determining fresh and dry weight, length, internode diameters, and percentage of starch. Nondestructive testing comprised assessing the potential for bud sprouting and shoot development. Each mother plant in the I and NI beds was considered a replicate, with a total of 360 cuttings per treatment. It was observed that cuttings from infected plants had significantly lower (P<0.05) internode diameter, length, and fresh and dry weight than those of the uninfected plants. The percentage of starch content of the cuttings did not differ significantly. All cuttings showed the same percentage (100%) of bud breaking and no changes in growth and development of seedlings regardless of source. Given these results, it was concluded that vines of ?Paulsen 1103? infested with ground pearl produce smaller cuttings than those of uninfected plants but with no reduction in bud break percentage or seedling development. Key words: Margarodidae, Vitaceae, insect?plant interaction, carbohydrates. RESUMO A pérola-da-terra, Eurhizococcus brasiliensis, tem sido considerada uma importante praga dos vinhedos no sul do Brasil, sendo que as plantas atacadas manifestam clorose foliar, redução no vigor, definhamento e morte. Este trabalho teve por objetivo avaliar a qualidade de estacas lenhosas produzidas a partir do contraste de videiras infestadas (I) e não infestadas (NI) por pérola-da-terra. Após 29 meses de cultivo em canteiros de alvenaria, em presença ou ausência de pérola-da-terra, cada planta da variedade ?Paulsen 1103? (Vitis berlandieri × Vitis rupestris) foi submetida à retirada de 12 ramos de ano, com no máximo 12 gemas cada, sendo subdivididos em três porções 4 gemas estaca-1) e submetidos a avaliações destrutivas e não destrutivas. As destrutivas consistiram em determinar massas fresca e seca, comprimento, diâmetro de entrenós e percentual de amido. As avaliações não estrutivas consistiram em testar o potencial de brotação e desenvolvimento das estacas. Cada planta matriz dos canteiros I e NI foi considerada uma repetição, totalizando 360 estacas por tratamento. As estacas das plantas infestadas tiveram uma redução (P<0,05), em relação às não infestadas, em diâmetro, comprimento e massas fresca e seca. Não houve contraste significativo do percentual de amido avaliado das estacas. Quanto à brotação, destaca-se que todas as estacas apresentaram o mesmo percentual (100%), independente da origem, sem alterações no desenvolvimento e crescimento das mudas. Diante desses resultados, salienta-se que videiras ?Paulsen 1103? infestadas por pérola-da-terra produzem estacas menores, porém não há comprometimento no percentual de brotação e desenvolvimento das mudas, quando comparadas com plantas não infestadas. Palavras-chave: Margarodidae, Vitaceae, interação inseto-planta, carboidrato
Resumo:
In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation. Many cultivars have been tested according to their adaptation to the climate and soil, and the main variety used for red wines is Syrah. This work aimed to evaluate five clones of Syrah, grafted on two rootstocks, in two harvests of the second semester of 2009 and 2010, according to the chemical analyses of the wines.The clones evaluated were 100, 174, 300, 470 and 525, the rootstocks were Paulsen 1103 and IAC 313 (Golia x Vitis caribeae). Grapes were harvested in November 2009 and 2010 and the yield was evaluated. Climate characteristics of each harvest was determined and correlated to the results. Wines were elaborated in glass tanks of 20 L, with alcoholic fermentation at 25ºC for seven days, then wines were pressed and malolactic fermentation was carried out at 18ºC for 20 days. The following parameters were analyzed: alcohol content, dry extract, total anthocyanins, total phenolic index. High performance liquid chromatography was used to determine tartaric, malic, lactic and citric organic acids. Results showed that wines presented different concentrations of classical analyses, phenolics and organic acids according to the harvest date, rootstocks and clones. Principal component analysis was applied on data and clusters with wine samples were formed, explaining the variability, and results are discussed.
Resumo:
At worldwide level, the classical viticulture produces wines is almost all places in different climate types, where it is possible to obtain only one harvest per year. In these conditions, bud burst in vines occurs as a result of temperature raising at the end of the winter?beginning of spring. With the development of the vegetative cycle, grapes arrive to maturity/harvest period at the end of the summer?beginning of the fall season. After the fall of the leaves, vines undergo a dormant period with a vegetative repose (condition found also in some intertropical producer regions). A lot of grapes are produced for a long-time in the intertropical zone, but only a little part is used to winemaking. Considered a challenge in the past, to produce quality wines in the tropics became reality. The present industry of fine wines began about 30 years ago. Today, there are many commercial wineries in several countries in Occident and Orient in the tropical zone of the globe, like in Brazil, India, Thailand and Venezuela, producing some million liters of fine wines per year - called ?tropical wines?. This article analysis these climates, in relation to the particular viticulture adapted and developed, where it is possible to have more than one cycle per year, with one or more harvests per year. Based on the particularities of this viticulture, a characterization is proposed for the viticulture of ?tropical wines?. Some examples showing different tropical climates are presented.
Resumo:
Traditional winegrowing areas are located in temperate climate zones and allow to produce grapes only once per year. Tropical wines have been elaborated in India, Thailand, Venezuela and Brazil and present another kind of viticulture, as compared with countries located in temperate climate zones. Northeast of Brazil started wine production twenty six years ago. This region vines can produce two or three crops per year, depending of the cycle of different cultivars. Harvests can be scaled throughout the year, mainly between May and December, corresponding to the dry season. Red, white, rosé and sparkling wines are being elaborated in the region. The objective of this work was to determine the physico-chemical and aromatic characteristics of some tropical wines elaborated in Northeast of Brazil, with grapes harvested in November 2008. Wines were elaborated using traditional method with control of the alcoholic and malolactic fermentation temperatures, at 25 and 18ºC for red wines, respectively, and at 18ºC for alcoholic fermentation of the white wines. After stabilization and bottling and wines were analyzed to determine physico-chemical characteristics, like alcohol degree, pH, total and volatile acidities, dry extract, sulfur dioxide, total anthocyanin and total phenol index. Aromatic profile was determined by gas chromatography, while 19 esters and 6 superior alcohols were identified. Wines presented different chemical and aromatic characteristics according to different grape cultivars.
Resumo:
Abstract Grapevine leafroll disease is associated with several species of phloem-limited grapevine leafrollassociated viruses (GLRaV), some of which are transmitted by mealybugs and scale insects. The grape phylloxera, Daktulosphaira vitifoliae (Fitch) Biotype A (Hemiptera: Phylloxeridae), is a common vineyard pest that feeds on the phloem of vine roots. There is concern that these insects may transmit one or more GLRaV species, particularly GLRaV-2, a species in the genus Closterovirus. A field survey was performed in vineyards with a high incidence of grapevine leafroll disease and D. vitifoliae was assessed for acquisition of GLRaV. In greenhouse experiments, the ability of D. vitifoliae to transmit GLRaV from infected root sections or vines to co-planted virus-free recipient vines was tested. There were no GLRaV-positive D. vitifoliae in the field survey, nor did D. vitifoliae transmit GLRaV- 1, ?2, ?3, or -4LV in greenhouse transmission experiments. Some insects tested positive for GLRaV after feeding on infected source vines in the greenhouse, however there was no evidence of virus transmission to healthy plants. These findings, in combination with the sedentary behaviour of the soil biotype of D. vitifoliae, make it unlikely that D. vitifoliae is a vector of any GLRaV.