739 resultados para VOLTAGES
Resumo:
Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80-xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (T-g) and two crystallization reactions (T-cl & T-c2) upon heating. It is also found that there is only a marginal change in T-g with the addition of up to about 10% of Ga; around this composition an increase is seen in 7, which culminates in a local maximum around x = 15. The decrease exhibited in T, beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80-xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in V-tau around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of T-cl is found to be very similar to that of V-T of As20Te80-xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80-xGax glasses. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses reliability issues in torsional MEMS varactor. Self-actuation due to high ac signals is analyzed, and solutions are proposed. The mode of failure at high actuation voltages is analyzed and established through experiments. Issues like stiction due to high voltages and effect of high residual stress are studied experimentally.
Resumo:
A three-level space phasor generation scheme with common mode elimination and with reduced power device count is proposed for an open end winding induction motor in this paper. The open end winding induction motor is fed by the three-level inverters from both sides. Each two level inverter is formed by cascading two two-level inverters. By sharing the bottom inverter for the two three-level inverters on either side, the power device count is reduced. The switching states with zero common mode voltage variation are selected for PWM switching so that there is no alternating common mode voltage in the pole voltages as well as in phase voltages. Only two isolated DC-links, with half the voltage rating of a conventional three-level neutral point clamped inverter, are needed for the proposed scheme.
Resumo:
The conducted as well as the induced voltages on control cables and control circuits due to transient electromagnetic (EM) fields generated during switching operations in a gas-insulated substation (GIS) depend on the waveshape of the very fast transient overvoltages and the associated very-fast transient currents (VFTCs). The aim of this paper is to build a basis for characterizing the VFTC generated in gas-insulated switchgear and the,associated equipment during switching operations for the study of transient coupling phenomena. The peak magnitudes of VFTC and their dominant frequency content at various locations have been computed in a 245-kV GIS for different switching operations as well as substation configurations. Finally, the influence of the substation layout on the frequency spectrum, dominant frequencies, and the highest possible frequency component of the VFTC at various distances from the switch have been reported.
Resumo:
A hybrid computer for structure factor calculations in X-ray crystallography is described. The computer can calculate three-dimensional structure factors of up to 24 atoms in a single run and can generate the scatter functions of well over 100 atoms using Vand et al., or Forsyth and Wells approximations. The computer is essentially a digital computer with analog function generators, thus combining to advantage the economic data storage of digital systems and simple computing circuitry of analog systems. The digital part serially selects the data, computes and feeds the arguments into specially developed high precision digital-analog function generators, the outputs of which being d.c. voltages, are further processed by analog circuits and finally the sequential adder, which employs a novel digital voltmeter circuit, converts them back into digital form and accumulates them in a dekatron counter which displays the final result. The computer is also capable of carrying out 1-, 2-, or 3-dimensional Fourier summation, although in this case, the lack of sufficient storage space for the large number of coefficients involved, is a serious limitation at present.
Resumo:
A voltage source inverter-fed induction motor produces a pulsating torque due to application of nonsinusoidal voltages. Torque pulsation is strongly influenced by the pulsewidth modulation (PWM) method employed. Conventional space vector PWM (CSVPWM) is known to result in less torque ripple than sine-triangle PWM. This paper aims at further reduction in the pulsating torque by employing advanced bus-clamping switching sequences, which apply an active vector twice in a subcycle. This paper proposes a hybrid PWM technique which employs such advanced bus-clamping sequences in conjunction with a conventional switching sequence. The proposed hybrid PWM technique is shown to reduce the torque ripple considerably over CSVPWM along with a marginal reduction in current ripple.
Resumo:
The paper describes a simple instrument for the measurement of the peak amplitudes of impulse voltages up to 250 v with an accuracy to ±3%. The response of the instrument is fast enough to read the peak amplitude of a 0.5/10 μsec impulse wave and its response remains the same for impulses of longer duration. Its favourable response has been obtained by charging a capacitor through a thyratron and measuring the voltage across it by an inverted triode voltmeter. The discharge time constant of the instrument is 5000 sec so that the reading can be taken at leisure. It can be used for the measurement of peak amplitudes of repetitive impulse and power frequency voltages also
Resumo:
Doping dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were carried out on polypyrrole devices in metal-polymer-metal sandwich structure. Temperature dependent I-V measurements infer that space-charge limited conduction (SCLC) with exponential trap distribution is appropriate for the moderately doped samples, whereas trap-free SCLC is observed in lightly doped samples. Trap densities and energies are estimated, the effective mobility is calculated using the Poole-Frenkel model, and the mobility exhibits thermally activated behavior. Frequency dependent capacitance-voltage characteristics show a peak near zero bias voltage, which implies that these devices are symmetric with a negligible barrier height at the metal-polymer interface. Low frequency capacitance measurements have revealed a negative capacitance at higher voltages due to the processes associated with the injection and redistribution of space-charges. (C) 2010 American Institute of Physics.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.
Resumo:
Cascaded multilevel inverters synthesize a medium-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic allows one to achieve high-quality output voltages and input currents and also outstanding availability due to their intrinsic component redundancy. Due to these features, the cascaded multilevel inverter has been recognized as an important alternative in the medium-voltage inverter market. This paper presents a survey of different topologies, control strategies and modulation techniques used by these inverters. Regenerative and advanced topologies are also discussed. Applications where the mentioned features play a key role are shown. Finally, future developments are addressed.
Resumo:
As the study of electrical breakdown phenomena in vacuum systems, gains more importance, a thorough understanding of the breakdown mechanism at high voltages necessitates a chamber for experimental studies. An epoxy-resin chamber has been constructed by casting ring sections which were joined together. The advantages of such a chamber over the conventional metal or glass chamber are given especially as regards the electric field configuration, high voltage lead-in, and the ease of construction. Special facilities can be incorporated while constructing the chamber which makes it more versatile; for example, in pre-breakdown current measurements, electron beam focusing studies, etc.
Resumo:
A multilevel inverter with 12-sided polygonal voltage space vector structure is proposed in this paper. The present scheme provides elimination of common mode voltage variation and 5(th) and 7(th) order harmonics in the entire operating range of the drive. The proposed multi level structure is achieved by cascading only the conventional two-level inverters with asymmetrical DC link voltages. The bandwidths problems associated with conventional hexagonal voltage space vector structure current controllers, due to the presence of 5(th) and 7(th) harmonics, in the over modulation region, is absent in the present 12-sided structure. So a linear voltage control up to 12-step operation is possible, from the present twelve sided scheme, with less current control complexity. An open-end winding structure is used for the induction motor drive.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Resumo:
For hybrid electric vehicles the batteries and the drive dc-link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies and the dc-link is at higher voltage to have higher efficiency on the motor side. Therefore a power interface between the batteries and the drive's dc-link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery and grid to battery. This paper proposes a multi power port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining any gain, wide load variations, lower output current ripple and capability of parallel battery energy due to the modular structure. The development and testing of a bi-directional fly-back DC-DC converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for DC link voltage regulation. The experimental results are presented to show the working of the proposed converter.