964 resultados para Totally Disconnected N-Dimensional Space


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index imagersquos multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partitionrsquos center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images haves similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the ldquodimensionality curserdquo existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms imagersquos text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partitionrsquos center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization has proven to be a powerful and widely-applicable tool the analysis and interpretation of data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space. However, for complex data sets living in a high-dimensional space it is unlikely that a single two-dimensional projection can reveal all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be visualized at the top level, with clusters and sub-clusters of data points visualized at deeper levels. The algorithm is based on a hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximization algorithm. We demonstrate the principle of the approach first on a toy data set, and then apply the algorithm to the visualization of a synthetic data set in 12 dimensions obtained from a simulation of multi-phase flows in oil pipelines and to data in 36 dimensions derived from satellite images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. It is well documented that myopia is associated with an increase in axial length or, more specifically, in vitreous chamber depth. Whether the transverse dimensions of the eye also increase in myopia is relevant to further understanding of its development. METHODS. The posterior retinal surface was localized in two-dimensional space in both eyes of young adult white and Taiwanese-Chinese iso- and anisomyopes (N = 56), from measured keratometry, A-scan ultrasonography, and central and peripheral refraction (±35°) data, with the aid of a computer modeling program designed for this purpose. Anisomyopes had 2 D or more interocular difference in their refractive errors, with mean values in their more myopic eyes of -5.57 D and in their less myopic eyes of -3.25 D, similar to the means of the two isomyopic groups. The derived retinal contours for the more and less myopic eyes were compared by way of investigating ocular shape changes that accompany myopia, in the posterior region of the vitreous chamber. The presence and size of optic disc crescents were also investigated as an index of retinal stretching in myopia. RESULTS. Relative to the less myopic eyes of anisometropic subjects, the more myopic eyes were more elongated and also distorted into a more prolate shape in both the white and Chinese groups. However, the Chinese eyes showed a greater and more uniform relative expansion of the posterior retinal surface in their more myopic eyes, and this was associated with larger optic disc crescents. The changes in the eyes of whites displayed a nasal-temporal axial asymmetry, reflecting greater enlargement of the nasal retinal sector. CONCLUSIONS. Myopia is associated with increased axial length and a prolate shape. This prolate shape is consistent with the proposed idea that axial and transverse dimensions of the eye are regulated differently. The observations that ocular shape changes are larger but more symmetrical in Chinese eyes than in eyes of whites warrant further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes a novel connectionist machine utilizing induction by a Hilbert hypercube representation. This representation offers a number of distinct advantages which are described. We construct a theoretical and practical learning machine which lies in an area of overlap between three disciplines - neural nets, machine learning and knowledge acquisition - hence it is refered to as a "coalesced" machine. To this unifying aspect is added the various advantages of its orthogonal lattice structure as against less structured nets. We discuss the case for such a fundamental and low level empirical learning tool and the assumptions behind the machine are clearly outlined. Our theory of an orthogonal lattice structure the Hilbert hypercube of an n-dimensional space using a complemented distributed lattice as a basis for supervised learning is derived from first principles on clearly laid out scientific principles. The resulting "subhypercube theory" was implemented in a development machine which was then used to test the theoretical predictions again under strict scientific guidelines. The scope, advantages and limitations of this machine were tested in a series of experiments. Novel and seminal properties of the machine include: the "metrical", deterministic and global nature of its search; complete convergence invariably producing minimum polynomial solutions for both disjuncts and conjuncts even with moderate levels of noise present; a learning engine which is mathematically analysable in depth based upon the "complexity range" of the function concerned; a strong bias towards the simplest possible globally (rather than locally) derived "balanced" explanation of the data; the ability to cope with variables in the network; and new ways of reducing the exponential explosion. Performance issues were addressed and comparative studies with other learning machines indicates that our novel approach has definite value and should be further researched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the project is to enhance the already effective health-monitoring system (HUMS) for helicopters by analysing structural vibrations to recognise different flight conditions directly from sensor information. The goal of this paper is to develop a new method to select those sensors and frequency bands that are best for detecting changes in flight conditions. We projected frequency information to a 2-dimensional space in order to visualise flight-condition transitions using the Generative Topographic Mapping (GTM) and a variant which supports simultaneous feature selection. We created an objective measure of the separation between different flight conditions in the visualisation space by calculating the Kullback-Leibler (KL) divergence between Gaussian mixture models (GMMs) fitted to each class: the higher the KL-divergence, the better the interclass separation. To find the optimal combination of sensors, they were considered in pairs, triples and groups of four sensors. The sensor triples provided the best result in terms of KL-divergence. We also found that the use of a variational training algorithm for the GMMs gave more reliable results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projection of a high-dimensional dataset onto a two-dimensional space is a useful tool to visualise structures and relationships in the dataset. However, a single two-dimensional visualisation may not display all the intrinsic structure. Therefore, hierarchical/multi-level visualisation methods have been used to extract more detailed understanding of the data. Here we propose a multi-level Gaussian process latent variable model (MLGPLVM). MLGPLVM works by segmenting data (with e.g. K-means, Gaussian mixture model or interactive clustering) in the visualisation space and then fitting a visualisation model to each subset. To measure the quality of multi-level visualisation (with respect to parent and child models), metrics such as trustworthiness, continuity, mean relative rank errors, visualisation distance distortion and the negative log-likelihood per point are used. We evaluate the MLGPLVM approach on the ‘Oil Flow’ dataset and a dataset of protein electrostatic potentials for the ‘Major Histocompatibility Complex (MHC) class I’ of humans. In both cases, visual observation and the quantitative quality measures have shown better visualisation at lower levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysing the molecular polymorphism and interactions of DNA, RNA and proteins is of fundamental importance in biology. Predicting functions of polymorphic molecules is important in order to design more effective medicines. Analysing major histocompatibility complex (MHC) polymorphism is important for mate choice, epitope-based vaccine design and transplantation rejection etc. Most of the existing exploratory approaches cannot analyse these datasets because of the large number of molecules with a high number of descriptors per molecule. This thesis develops novel methods for data projection in order to explore high dimensional biological dataset by visualising them in a low-dimensional space. With increasing dimensionality, some existing data visualisation methods such as generative topographic mapping (GTM) become computationally intractable. We propose variants of these methods, where we use log-transformations at certain steps of expectation maximisation (EM) based parameter learning process, to make them tractable for high-dimensional datasets. We demonstrate these proposed variants both for synthetic and electrostatic potential dataset of MHC class-I. We also propose to extend a latent trait model (LTM), suitable for visualising high dimensional discrete data, to simultaneously estimate feature saliency as an integrated part of the parameter learning process of a visualisation model. This LTM variant not only gives better visualisation by modifying the project map based on feature relevance, but also helps users to assess the significance of each feature. Another problem which is not addressed much in the literature is the visualisation of mixed-type data. We propose to combine GTM and LTM in a principled way where appropriate noise models are used for each type of data in order to visualise mixed-type data in a single plot. We call this model a generalised GTM (GGTM). We also propose to extend GGTM model to estimate feature saliencies while training a visualisation model and this is called GGTM with feature saliency (GGTM-FS). We demonstrate effectiveness of these proposed models both for synthetic and real datasets. We evaluate visualisation quality using quality metrics such as distance distortion measure and rank based measures: trustworthiness, continuity, mean relative rank errors with respect to data space and latent space. In cases where the labels are known we also use quality metrics of KL divergence and nearest neighbour classifications error in order to determine the separation between classes. We demonstrate the efficacy of these proposed models both for synthetic and real biological datasets with a main focus on the MHC class-I dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To navigate effectively in three-dimensional space, flying insects must approximate distances to nearby objects. Humans are able to use an array of cues to guide depth perception in the visual world. However, some of these cues are not available to insects that are constrained by their rigid eyes and relatively small body size. Flying fruit flies can use motion parallax to gauge the distance of nearby objects, but using this cue becomes a less effective strategy as objects become more remote. Humans are able to infer depth across far distances by comparing the angular distance of an object to the horizon. This study tested if flying fruit flies, like humans, use the relative position of the horizon as a depth cue. Fruit flies in tethered flight were stimulated with a virtual environment that displayed vertical bars of varying elevation relative to a horizon, and their tracking responses were recorded. This study showed that tracking responses of the flies were strongly increased by reducing the apparent elevation of the bar against the horizon, indicating that fruit flies may be able to assess the distance of far off objects in the natural world by comparing them against a visual horizon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pesquisa trás como estudo, investigar “As Diretrizes curriculares para a Educação Ambiental Escolar na cidade de Rivera-Uruguai”; como uma temática que faz parte de meu quefazer pedagógico como docente na rede pública escolar do município de Rivera. Neste sentido, buscando um maior esclarecimento e compreensão de como vem sendo desenvolvida as ações de Educação Ambiental nas escolas públicas riverenses, faz-se necessário realizar uma analise detalhada sobre as diretrizes curriculares uruguaia, e da Educação Ambiental no currículo de educação escolar do Uruguai. E para verificar como estas diretrizes curriculares, e a Educação Ambiental, materializam-se no âmbito da rede pública de ensino escolar riverense; foi importante conhecer a opinião dos educadores riverenses a cerca dos conteúdos destas diretrizes curriculares e da Educação Ambiental; assim como, as estratégias e metodologias utilizadas por estes educadores para viabilizar a tranversalidade da Educação Ambiental nas ações escolares. E o material coletado, e analisado a partir dos princípios da Educação Ambiental na PNEA brasileira, e de alguns pensadores que vem ao encontro deste eixo temático. Nesse âmbito, para se poder obter um maior esclarecimento acerca das ações de Educação Ambiental realizadas no âmbito escolar riverense, utiliza-se como procedimento metodológico a pesquisa qualitativa, com a entrevista semi-estruturada com questionário aberto, realizada aos coordenadores do Departamento do Meio Ambiente a nível nacional e local, e a quatro educadores da rede pública escolar riverense. A análise e interpretação dos dados coletados nos mostram, que apesar de que Educação Ambiental esteja contemplada no currículo escolar como linha transversal, perpassando todas as áreas e campos disciplinares que constitui o programa de educação escolar, nos parâmetros atuais em que se encontra o sistema de ensino uruguaio, fica claro de que a Educação Ambiental remete-se apenas ao ponto de vista ecológico, totalmente desconexa da realidade objetiva e material dos seus sujeitos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Geometría del Espacio es una rama de la Matemática que estudia las propieda-des y medidas de figurasque se relacionan con la mayoría de objetos tridimensionales que tenemos a nuestro alrededor; por esto nuestro trabajo titulado “Elaboración de una guía y material didáctico de la Geometría del Espacio para el Laboratorio de Matemática de la carrera de Matemáticas y Física de la Universidad de Cuenca” da lugar a una nueva estrategia que puede utilizar el docente en el proceso de enseñanza-aprendizaje de esta asignatura. En el capítulo uno de nuestro trabajo de graduación se analizan los aspectos generales de la educación así como las corrientes pedagógicas que están presentes dentro del proceso educativo, para luego hablar de la didáctica y la importancia de trabajar con material concreto en el área de Matemática, específicamente en la Geometría del Espacio así como los recursos que son óptimos para trabajar esta asignatura. En el capítulo dos, se demuestra mediante un muestreo no probabilístico que existe dificultad en la comprensión de los contenidos de la Geometría del Espacio y que una buena opción para desarrollar el proceso de enseñanza-aprendizaje sobre esta asignatura es la utilización de material concreto y de una guía didáctica que facilite la comprensión de los contenidos. Por último en el capítulo tres se presenta un conjunto de diez prácticas sobre pla-nos y sólidos, las cuales, siguen los pasos que exige una práctica de laboratorio innovadora, de una manera ordenada y secuencial para reforzar el proceso de enseñanza-aprendizaje.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event extraction from texts aims to detect structured information such as what has happened, to whom, where and when. Event extraction and visualization are typically considered as two different tasks. In this paper, we propose a novel approach based on probabilistic modelling to jointly extract and visualize events from tweets where both tasks benefit from each other. We model each event as a joint distribution over named entities, a date, a location and event-related keywords. Moreover, both tweets and event instances are associated with coordinates in the visualization space. The manifold assumption that the intrinsic geometry of tweets is a low-rank, non-linear manifold within the high-dimensional space is incorporated into the learning framework using a regularization. Experimental results show that the proposed approach can effectively deal with both event extraction and visualization and performs remarkably better than both the state-of-the-art event extraction method and a pipeline approach for event extraction and visualization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A generalization of the classical problem of optimal lattice covering of R-n is considered. Solutions to this generalized problem are found in two specific classes of lattices. The global optimal solution of the generalization is found for R-2. (C) 1998 Elsevier Science Inc. All rights reserved.