383 resultados para Theorems


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is devoted to prove a large-deviation principle for solutions to multidimensional stochastic Volterra equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is currently a considerable diversity of quantitative measures available for summarizing the results in single-case studies. Given that the interpretation of some of them is difficult due to the lack of established benchmarks, the current paper proposes an approach for obtaining further numerical evidence on the importance of the results, complementing the substantive criteria, visual analysis, and primary summary measures. This additional evidence consists of obtaining the statistical significance of the outcome when referred to the corresponding sampling distribution. This sampling distribution is formed by the values of the outcomes (expressed as data nonoverlap, R-squared, etc.) in case the intervention is ineffective. The approach proposed here is intended to offer the outcome"s probability of being as extreme when there is no treatment effect without the need for some assumptions that cannot be checked with guarantees. Following this approach, researchers would compare their outcomes to reference values rather than constructing the sampling distributions themselves. The integration of single-case studies is problematic, when different metrics are used across primary studies and not all raw data are available. Via the approach for assigning p values it is possible to combine the results of similar studies regardless of the primary effect size indicator. The alternatives for combining probabilities are discussed in the context of single-case studies pointing out two potentially useful methods one based on a weighted average and the other on the binomial test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result, we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations, we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[cat] En aquest treball introduïm la classe de "multi-sided Böhm-Bawerk assignment games", que generalitza la coneguda classe de jocs d’assignació de Böhm-Bawerk bilaterals a situacions amb un nombre arbitrari de sectors. Trobem els extrems del core de qualsevol multi-sided Böhm-Bawerk assignment game a partir d’un joc convex definit en el conjunt de sectors enlloc del conjunt de venedors i compradors. Addicionalment estudiem quan el core d’aquests jocs d’assignació és estable en el sentit de von Neumann-Morgenstern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundaments of the modern Density Functional Theory (DFT), its basic theorems, principles and methodology are presented. This review also discuss important and widely used concepts in chemistry but that had not been precisely defined until the development of the DFT. These concepts were proposed and used from an empirical base, but now their precise definition are well established in the DFT formalism. Concepts such as chemical potential (electronegativity), hardness, softness and Fukui function are presented and their consequences to the understanding of chemical reactivity are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 'An undermining diagnosis of relativism about truth', Horwich claims that the notion of relative truth is either explanatorily sterile or explanatorily superfluous. In the present paper, I argue that Horwich's explanatory demands set the bar unwarrantedly high: given the philosophical import of the theorems of a truth-theoretic semantic theory, Horwich's proposed explananda, what he calls acceptance facts, are too indirect for us to expect a complete explanation of them in terms of the deliverances of a theory of meaning based on the notion of relative truth. And, to the extent that there might be such an explanation in certain cases, there is no reason to expect relative truth to play an essential, ineliminable role, nor to endorse the claim that it should play such a role in order to be a theoretically useful notion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide an algorithm that automatically derives many provable theorems in the equational theory of allegories. This was accomplished by noticing properties of an existing decision algorithm that could be extended to provide a derivation in addition to a decision certificate. We also suggest improvements and corrections to previous research in order to motivate further work on a complete derivation mechanism. The results presented here are significant for those interested in relational theories, since we essentially have a subtheory where automatic proof-generation is possible. This is also relevant to program verification since relations are well-suited to describe the behaviour of computer programs. It is likely that extensions of the theory of allegories are also decidable and possibly suitable for further expansions of the algorithm presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists of a theoretical part and an experimental one. The first part provides a simple treatment of the celebrated von Neumann minimax theorem as formulated by Nikaid6 and Sion. It also discusses its relationships with fundamental theorems of convex analysis. The second part is about externality in sponsored search auctions. It shows that in these auctions, advertisers have externality effects on each other which influence their bidding behavior. It proposes Hal R.Varian model and shows how adding externality to this model will affect its properties. In order to have a better understanding of the interaction among advertisers in on-line auctions, it studies the structure of the Google advertisements networ.k and shows that it is a small-world scale-free network.