243 resultados para Terahertz


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonant tunnelling diode (RTD) is known to be the fastest electronics device that can be fabricated in compact form and operate at room temperature with potential oscillation frequency up to 2.5 THz. The RTD device consists of a narrow band gap quantum well layer sandwiched between two thin wide band gap barriers layers. It exhibits negative differential resistance (NDR) region in its current-voltage (I-V) characteristics which is utilised in making oscillators. Up to date, the main challenge is producing high output power at high frequencies in particular. Although oscillation frequencies of ~ 2 THz have been already reported, the output power is in the range of micro-Watts. This thesis describes the systematic work on the design, fabrication, and characterisation of RTD-based oscillators in microwave/millimetre-wave monolithic integrated circuits (MMIC) form that can produce high output power and high oscillation frequency at the same time. Different MMIC RTD oscillator topologies were designed, fabricated, and characterised in this project which include: single RTD oscillator which employs one RTD device, double RTDs oscillator which employs two RTD devices connected in parallel, and coupled RTD oscillators which combine the powers of two oscillators over a single load, based on mutual coupling and which can employ up to four RTD devices. All oscillators employed relatively large size RTD devices for high power operation. The main challenge was to realise high oscillation frequency (~ 300 GHz) in MMIC form with the employed large sized RTD devices. To achieve this aim, proper designs of passive structures that can provide small values of resonating inductances were essential. These resonating inductance structures included shorted coplanar wave guide (CPW) and shorted microstrip transmission lines of low characteristics impedances Zo. Shorted transmission line of lower Zo has lower inductance per unit length. Thus, the geometrical dimensions would be relatively large and facilitate fabrication by low cost photolithography. A series of oscillators with oscillation frequencies in the J-band (220 – 325 GHz) range and output powers from 0.2 – 1.1 mW have been achieved in this project, and all were fabricated using photolithography. Theoretical estimation showed that higher oscillation frequencies (> 1 THz) can be achieved with the proposed MMIC RTD oscillators design in this project using photolithography with expected high power operation. Besides MMIC RTD oscillators, reported planar antennas for RTD-based oscillators were critically reviewed and the main challenges in designing high performance integrated antennas on large dielectric constant substrates are discussed in this thesis. A novel antenna was designed, simulated, fabricated, and characterised in this project. It was a bow-tie antenna with a tuning stub that has very wide bandwidth across the J-band. The antenna was diced and mounted on a reflector ground plane to alleviate the effect of the large dielectric constant substrate (InP) and radiates upwards to the air-side direction. The antenna was also investigated for integration with the all types of oscillators realised in this project. One port and two port antennas were designed, simulated, fabricated, and characterised and showed the suitability of integration with the single/double oscillator layout and the coupled oscillator layout, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the design, construction, and initial applications of a high-resolution terahertz time-domain ASOPS spectrometer. The instrument employs asynchronous optical sampling (ASOPS) between two Ti:sapphire ultrafast lasers operating at a repetition rate of approximately 80 MHz, and we thus demonstrate a THz frequency resolution approaching the limit of that repetition rate. This is an order of magnitude improvement in resolution over typical THz time-domain spectrometers. The improved resolution is important for our primary effort of collecting THz spectra for far-infrared astronomy. We report on various spectroscopic applications including the THz rotational spectrum of water, where we achieve a mean frequency error, relative to established line centers, of 27.0 MHz. We also demonstrate application of the THz system to the long-duration observation of a coherent magnon mode in a anti-ferromagnetic yttrium iron oxide (YFeO3) crystal. Furthermore, we apply the all-optical virtual delay line of ASOPS to a transient thermoreflectance experiment for quickly measuring the thermal conductivity of semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis details the design and applications of a terahertz (THz) frequency comb spectrometer. The spectrometer employs two offset locked Ti:Sapphire femtosecond oscillators with repetition rates of approximately 80 MHz, offset locked at 100 Hz to continuously sample a time delay of 12.5 ns at a maximum time delay resolution of 15.6 fs. These oscillators emit continuous pulse trains, allowing the generation of a THz pulse train by the master, or pump, oscillator and the sampling of this THz pulse train by the slave, or probe, oscillator via the electro-optic effect. Collecting a train of 16 consecutive THz pulses and taking the Fourier transform of this pulse train produces a decade-spanning frequency comb, from 0.25 to 2.5 THz, with a comb tooth width of 5 MHz and a comb tooth spacing of ~80 MHz. This frequency comb is suitable for Doppler-limited rotational spectroscopy of small molecules. Here, the data from 68 individual scans at slightly different pump oscillator repetition rates were combined, producing an interleaved THz frequency comb spectrum, with a maximum interval between comb teeth of 1.4 MHz, enabling THz frequency comb spectroscopy.

The accuracy of the THz frequency comb spectrometer was tested, achieving a root mean square error of 92 kHz measuring selected absorption center frequencies of water vapor at 10 mTorr, and a root mean square error of 150 kHz in measurements of a K-stack of acetonitrile. This accuracy is sufficient for fitting of measured transitions to a model Hamiltonian to generate a predicted spectrum for molecules of interest in the fields of astronomy and physical chemistry. As such, the rotational spectra of methanol and methanol-OD were acquired by the spectrometer. Absorptions from 1.3 THz to 2.0 THz were compared to JPL catalog data for methanol and the spectrometer achieved an RMS error of 402 kHz, improving to 303 kHz when excluding low signal-to-noise absorptions. This level of accuracy compares favorably with the ~100 kHz accuracy achieved by JPL frequency multiplier submillimeter spectrometers. Additionally, the relative intensity performance of the THz frequency comb spectrometer is linear across the entire decade-spanning bandwidth, making it the preferred instrument for recovering lineshapes and taking absolute intensity measurements in the THz region. The data acquired by the Terahertz Frequency Comb Spectrometer for methanol-OD is of comparable accuracy to the methanol data and may be used to refine the fit parameters for the predicted spectrum of methanol-OD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particulate matter distribution (PM) trends that exist in catalyzed particulate filters (CPFs) after loading, passive oxidation, active regeneration, and post loading conditions are not clearly understood. These data are required to optimize the operation of CPFs, prevent damage to the CPFs caused by non-uniform distributions, and develop accurate CPF models. To develop an understanding of PM distribution trends, multiple tests were conducted and the PM distribution was measured in three dimensions using a terahertz wave scanner. The results of this work indicate that loading, passive oxidation, active regeneration, and post loading can all cause non-uniform PM distributions. The density of the PM in the substrate after loading and the amount of PM that is oxidized during passive oxidations and active regenerations affect the uniformity of the distribution. Post loading that occurs after active regenerations result in distributions that are less uniform than post loading that occurs after passive oxidations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In macroscopic and even microscopic structural elements, surface effects can be neglected and classical theories are sufficient. As the structural size decreases towards the nanoscale regime, the surface-to-bulk energy ratio increases and surface effects must be taken into account. In the present work, the terahertz wave dispersion characteristics of a nanotube are studied with consideration of the surface effects as well as the non-local small scale effects. Non-local elasticity theory is used to derive the general governing differential equation based on equilibrium approach to include those scale effects. Scale and surface property dependent wave characteristic equations are obtained via spectral analysis. For the present study the material properties of an anodic alumina nanotube with crystallographic of < 111 > direction are considered. The present analysis shows that the effect of surface properties (surface integrated residual stress and surface integrated modulus) on the flexural wave characteristics of anodic nanotubes are more significant. It has been found that the flexural wavenumbers with surface effects are high as compared to that without surface effects. It has also been shown that, with consideration of surface effects the flexural wavenumbers are under compressive nature. The effect of the small scale and the size of the nanotube on wave dispersion properties are also captured in the present work. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunable materials with high anisotropy of refractive index and low loss are of particular interest in the microwave and terahertz range. Nematic liquid crystals are highly sensitive to electric and magnetic fields and may be designed to have particularly high birefringence. In this paper we investigate birefringence and absorption losses in an isothiocyanate based liquid crystal (designed for high anisotropy) in a broad range of the electromagnetic spectrum, namely 0.1-4 GHz, 30 GHz, 0.5-1.8 THz, and in the visible and near-infrared region (400 nm-1600 nm). We report high birefringence (Δn = 0.19-0.395) and low loss in this material. This is attractive for tunable microwave and terahertz device applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a parameter extraction algorithm based on a theoretical transfer function, which takes into account a converging THz beam. Using this, we successfully extract material parameters from data obtained for a quartz sample with a THz time domain spectrometer. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we demonstrated a dual-wavelength competitive output in Nd:Y3SC1.5Al3.5O12 ceramic disk laser. Different dual-wavelength output behaviors for Nd:YSAG and Nd:YAG ceramic disk laser were investigated and discussed. By applying the energy transfer model, we suggested the reasonable explanation for this new phenomenon as the disordered replacing of Al3+ ions by Sc3+ ions. The main advantage of the dual-wavelength ceramic laser is the possibility to serve as the seed source to generate Terahertz radiation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文主要研究了一系列具有不同配位环璄的锰化合物与去锰PSII颗粒的光组装过程;其次,应用太赫兹时域光谱技术对锰稳定蛋白PsbO蛋白的结构与功能进行了研究。主要结果如下: 1. 选择了一组单核、锰中心原子为二价、与羧基氧和氮配位的锰化合物与去锰光系统II颗粒进行了重组研究。研究结果表明,锰化合物中锰原子和氮原子的配位连接是影响电子传递恢复和放氧复合物重组效率的重要因素。锰化合物中锰原子与氮原子的配位,促进了锰原子与PSII脱辅基蛋白上的氨基酸残基进行光配位。33 kDa蛋白的加入显著提高光组装放氧活性,33 kDa蛋白的柔性构象有助于锰簇接受体积大的分子,并提高其稳定性,从而促进PSII反应中心锰簇的光组装。 2. 选择了一组拥有相同配体、锰中心原子价态不同的锰化合物与去锰PSII 颗粒进行重组。三个锰价态为+2,+3,+4价的锰化合物均表现出较高的恢复电子传递和放氧活性的能力,但锰与配体氧原子共价连接的锰化合物恢复电子传递和放氧活性的能力的很差,Mn-O连接阻碍WOC的重组。研究结果表明,锰化合物恢复电子传递活性和放氧活性的能力也受其中锰原子的价态及其它结构因素的影响。锰价态较低的锰化合物比锰价态较高的锰化合物更容易向PSII反应中心提供电子。锰化合物恢复电子传递和放氧活性的因素是不同的。锰化合物作为有效电子供体的效率与其螯合环数成反比,但配体的大小不是影响锰化合物重组放氧活性的主要因素。 3. 应用太赫兹时域光谱技术结合荧光光谱技术,研究了锰稳定蛋白PsbO在与金属离子作用及单个氨基酸被修饰后其构象变化和低频振动模的变化。实验结果显示,该蛋白上唯一的色氨酸对整个蛋白构象至关重要,它的改变引起整个蛋白分子低频振动模发生明显改变。此外,太赫兹时域光谱结果显示,PsbO可能含有钙结合位点。太赫兹时域光谱技术在研究蛋白构象变化,尤其是金属离子诱导的构象变化方面是相当灵敏的。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission terahertz time-domain spectroscopy (THz-TDS) measurements of carbon nanotube arrays are presented. A relatively thin film with vertically aligned multi-walled carbon nanotubes has been prepared and measured using THz-TDS. Experimental results were obtained from 80GHz to 2.5THz, and the sample has been characterized by extracting the relative permittivity of the carbon nanotubes. A combination of the Maxwell-Garnett and Drude models within the frequency range provide a good fit to the measured permittivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel material. Room temperature operation has been achieved up to frequencies of 1.5 THz, with noise equivalent powers as low as a few 10-11 W/Hz1/2, and high-speed response. © 2012 IEEE.