927 resultados para Telephone switching systems, Electronic
Resumo:
The electronics industry is encountering thermal challenges and opportunities with lengthscales comparable to or much less than one micrometer. Examples include nanoscale phonon hotspots in transistors and the increasing temperature rise in onchip interconnects. Millimeter-scale hotspots on microprocessors, resulting from varying rates of power consumption, are being addressed using two-phase microchannel heat sinks. Nanoscale thermal data storage technology has received much attention recently. This paper provides an overview of these topics with a focus on related research at Stanford University.
Resumo:
Presentation guide for Tom and Paul - apologies for quality/lack-of-rehersal. It was only intended as a mic-check, but I got carried away.
Resumo:
Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model
Resumo:
This paper discusses videoconferencing systems as a communication tool for the hearing impaired.
Resumo:
One of the major differences undergraduates experience during the transition to university is the style of teaching. In schools and colleges most students study key stage 5 subjects in relatively small informal groups where teacher–pupil interaction is encouraged and two-way feedback occurs through question and answer type delivery. On starting in HE students are amazed by the sizes of the classes. For even a relatively small chemistry department with an intake of 60-70 students, biologists, pharmacists, and other first year undergraduates requiring chemistry can boost numbers in the lecture hall to around 200 or higher. In many universities class sizes of 400 are not unusual for first year groups where efficiency is crucial. Clearly the personalised classroom-style delivery is not practical and it is a brave student who shows his ignorance by venturing to ask a question in front of such an audience. In these environments learning can be a very passive process, the lecture acts as a vehicle for the conveyance of information and our students are expected to reinforce their understanding by ‘self-study’, a term, the meaning of which, many struggle to understand. The use of electronic voting systems (EVS) in such situations can vastly change the students’ learning experience from a passive to a highly interactive process. This principle has already been demonstrated in Physics, most notably in the work of Bates and colleagues at Edinburgh.1 These small hand-held devices, similar to those which have become familiar through programmes such as ‘Who Wants to be a Millionaire’ can be used to provide instant feedback to students and teachers alike. Advances in technology now allow them to be used in a range of more sophisticated settings and comprehensive guides on use have been developed for even the most techno-phobic staff.
Resumo:
The purpose of this paper is to design a control law for continuous systems with Boolean inputs allowing the output to track a desired trajectory. Such systems are controlled by items of commutation. This type of systems, with Boolean inputs, has found increasing use in the electric industry. Power supplies include such systems and a power converter represents one of theses systems. For instance, in power electronics the control variable is the switching OFF and ON of components such as thyristors or transistors. In this paper, a method is proposed for the designing of a control law in state space for such systems. This approach is implemented in simulation for the control of an electronic circuit.
Resumo:
A Bond Graph is a graphical modelling technique that allows the representation of energy flow between the components of a system. When used to model power electronic systems, it is necessary to incorporate bond graph elements to represent a switch. In this paper, three different methods of modelling switching devices are compared and contrasted: the Modulated Transformer with a binary modulation ratio (MTF), the ideal switch element, and the Switched Power Junction (SPJ) method. These three methods are used to model a dc-dc Boost converter and then run simulations in MATLAB/SIMULINK. To provide a reference to compare results, the converter is also simulated using PSPICE. Both quantitative and qualitative comparisons are made to determine the suitability of each of the three Bond Graph switch models in specific power electronics applications
Resumo:
Introduction. Feature usage is a pre-requisite to realising the benefits of investments in feature rich systems. We propose that conceptualising the dependent variable 'system use' as 'level of use' and specifying it as a formative construct has greater value for measuring the post-adoption use of feature rich systems. We then validate the content of the construct as a first step in developing a research instrument to measure it. The context of our study is the post-adoption use of electronic medical records (EMR) by primary care physicians. Method. Initially, a literature review of the empirical context defines the scope based on prior studies. Having identified core features from the literature, they are further refined with the help of experts in a consensus seeking process that follows the Delphi technique. Results.The methodology was successfully applied to EMRs, which were selected as an example of feature rich systems. A review of EMR usage and regulatory standards provided the feature input for the first round of the Delphi process. A panel of experts then reached consensus after four rounds, identifying ten task-based features that would be indicators of level of use. Conclusions. To study why some users deploy more advanced features than others, theories of post-adoption require a rich formative dependent variable that measures level of use. We have demonstrated that a context sensitive literature review followed by refinement through a consensus seeking process is a suitable methodology to validate the content of this dependent variable. This is the first step of instrument development prior to statistical confirmation with a larger sample.
Resumo:
In this paper, we demonstrate that the inevitable action of the environment can be substantially weakened when considering appropriate nonstationary quantum systems. Beyond protecting quantum states against decoherence, an oscillating frequency can be engineered to make the system-reservoir coupling almost negligible. Differently from the program for engineering reservoir and similarly to the schemes for dynamical decoupling of open quantum systems, our technique does not require previous knowledge of the state to be protected. However, differently from the previously-reported schemes for dynamical decoupling, our technique does not rely on the availability of tailored external pulses acting faster than the shortest timescale accessible to the reservoir degree of freedom.
Resumo:
The bioelectrochemical behavior of three triphenylmethane (TPM) dyes commonly used as pH indicators, and their application in mediated electron transfer systems for glucose oxidase bioanodes in biofuel cells was investigated. Bromophenol Blue, Bromothymol Blue, Bromocresol Green were compared bio-electrochemically against two widely used mediators, benzoquinone and ferrocene carboxy aldehyde. Biochemical studies were performed in terms of enzymatic oxidation, enzyme affinity, catalytic efficiency and co-factor regeneration. The different features of the TPM dyes as mediators are determined by the characteristics in the oxidation/reduction processes studied electrochemically. The reversibility of the oxidation/reduction processes was also established through the dependence of the voltammetric peaks with the sweep rates. All three dyes showed good performances compared to the FA and BQ when evaluated in a half enzymatic fuel cell. Potentiodynamic and power response experiments showed maxima power densities of 32.8 mu W cm(-2) for ferrocene carboxy aldehyde followed by similar values obtained for TPM dyes around 30 mu W cm(-2) using glucose and mediator concentrations of 10 mmol L(-1) and 1.0 mmol L(-1), respectively. Since no mediator consumption was observed during the bioelectrochemical process, and also good redox re-cycled processes were achieved, the use of triphenylmethane dyes is considered to be promising compared to other mediated systems used with glucose oxiclase bioanodes and/or biofuel cells. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study is concerned with the structural and electronic properties of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems. Periodic quantum mechanical method with density functional theory at the B3LYP level has been carried out. Relaxed surface energies, structural characteristics and electronic properties of the (I 10), (0 10), (10 1) and (00) low-index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 models are studied. For, comparison purposes, the bare rutile TiO2 and SnO2 structures are also analyzed and compared with previous theoretical and experimental data. The calculated surface energy for both rutile TiO2 and SnO2 surfaces follows the sequence (110) < (010) < (101) < (001) and the energy increases as (010) < (101) < (110) < (001) and (010) approximate to (110) < (101) < (001) for SnO2/TiO2/SnO2 and TiO2/SnO2/TiO2 composite systems, respectively. SnO2/TiO2/SnO2 presents larger values of surface energy than the individual SnO2 and TiO2 metal oxides and the TiO2/SnO2/TiO2 system renders surface energy values of the same order that the TiO2 and lower than the SnO2. An analysis of the electronic structure of the TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 systems shows that the main characteristics of the upper part of the valence bands for all the studied surfaces are dominated by the external layers, i.e., by the TiO2 and the SnO2, respectively, and the topology of the lower part of the conduction bands looks like the core layers. There is an energy stabilization of both valence band top and conduction band bottom for (110) and (010) surfaces of the SnO2/TiO2/SnO2 composite system in relation to their core TiO2, whereas an opposite trend is found for the same surfaces of the TiO2/SnO2/TiO2 composite system in relation to the bare SnO2. The present theoretical results may explain the growth of TiO2@SnO2 bimorph composite nanotape.
Resumo:
Electronic transactions are becoming increasingly commonplace in the countries of Latin America and the Caribbean, despite the collapse of many dotcom firms and the failure of e-commerce to make inroads in the region. In the transport sphere, the gradual incorporation of technology in support of processes and the exchange of money flows between players has brought greater versatility, security and flexibility. In public transport, such initiatives take the form of automatic ticket machines and prepaid card dispensing machines. In urban transit, electronic purses used for the supervision and payment of parking time, and in road pricing, electronic toll systems streamline the process of collecting money; this is especially the case with motorways and urban concessions. And in shipping, electronic transfers are increasingly being used for the payment of customs dues and port charges.In view of the importance of the topic and the interest expressed in it, the Transport Unit has begun a study of these issues, and recently published a paper entitled Sistemas de cobro electrónico de pasajes en el transporte público, ("Electronic systems for payment of tickets in public transport") LC/L.1752-P/E, July 2002, on which this issue of the Bulletin is based.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)