969 resultados para TUMOR-GROWTH
Resumo:
Cancer patients present high mobilization of host protein, with a decrease in lean body mass and body fat depletion occurring in parallel to neoplastic growth. Since leucine is one of the principal amino acids used by skeletal muscle for energy, we investigated the changes in body composition of pregnant tumor-bearing rats after a leucine-supplemented diet. Sixty pregnant Wistar rats divided into six groups were fed a normal protein diet (18%, N) or a leucine-supplemented diet (3% L-leucine, L). The pregnant groups were: control (CN), Walker 256 carcinoma-bearing rats (WN), control rats pair-fed with tumor-bearing rats (pfN), leucine-supplemented (CL), leucine-supplemented tumor-bearing (WL), and leucine-supplemented rats pair-fed with tumor-bearing rats (pfL). At the end of pregnancy, all animals were sacrificed and body weight and tumor and fetal weight were determined. The carcasses were then analyzed for water, fat and total, collagen and non-collagen nitrogen content. Carcass weight was reduced in the WN, WL, pfN and pfL groups compared to control. The lean body mass and total carcass nitrogen were reduced in both tumor-bearing groups. Despite tumor growth and a decrease in fetal weight, there was a slight decrease in collagen (7%) and non-collagen nitrogen (8%) in the WL group compared with the WN group which showed a decrease of 8 and 12%, respectively. Although the WL group presented severe tumor growth effects, total carcass nitrogen and non-collagen nitrogen were particularly higher in this leucine-supplemented group compared to the WN group. These data suggest that the leucine-supplemented diet had a beneficial effect, probably attenuating body wasting.
Resumo:
The correlation between dietary trans fatty acids and neoplasia was examined in the present study. Walker 256 tumor-bearing and control rats were fed a trans monounsaturated fatty acid (MUFA)-rich diet for 8 weeks and the incorporation of trans fatty acids by tumor tissue was examined. Also, the effect of tumor growth on trans fatty acid composition of plasma and liver, and the content of thiobarbituric acid-reactive substances (TBARS) was determined. Walker 256 tumor cells presented both trans and cis MUFAs given in the diet. The equivalent diet proportions were 0.66 for trans and 1.14 for cis. Taking into consideration the proportion of trans MUFAs in plasma (11.47%), the tumor incorporated these fatty acids in a more efficient manner (18.27%) than the liver (9.34%). Therefore, the dietary trans fatty acids present in the diet are actively incorporated by the tumor. Tumor growth itself caused marked changes in the proportion of polyunsaturated fatty acids in the plasma and liver but provoked only slight modifications in both trans and cis MUFAs. Tumor growth also reduced the unsaturation index in both plasma and liver, from 97.79 to 86.83 and from 77.51 to 69.64, respectively. This effect was partially related to an increase in the occurrence of the lipid oxidation/peroxidation process of TBARS content which was increased in both plasma (from 0.428 to 0.505) and liver (from 9.425 to 127.792) due to tumor growth.
Resumo:
Cancer cachexia induces host protein wastage but the mechanisms are poorly understood. Branched-chain amino acids play a regulatory role in the modulation of both protein synthesis and degradation in host tissues. Leucine, an important amino acid in skeletal muscle, is higher oxidized in tumor-bearing animals. A leucine-supplemented diet was used to analyze the effects of Walker 256 tumor growth on body composition in young weanling Wistar rats divided into two main dietary groups: normal diet (N, 18% protein) and leucine-rich diet (L, 15% protein plus 3% leucine), which were further subdivided into control (N or L) or tumor-bearing (W or LW) subgroups. After 12 days, the animals were sacrificed and their carcass analyzed. The tumor-bearing groups showed a decrease in body weight and fat content. Lean carcass mass was lower in the W and LW groups (W = 19.9 ± 0.6, LW = 23.1 ± 1.0 g vs N = 29.4 ± 1.3, L = 28.1 ± 1.9 g, P < 0.05). Tumor weight was similar in both tumor-bearing groups fed either diet. Western blot analysis showed that myosin protein content in gastrocnemius muscle was reduced in tumor-bearing animals (W = 0.234 ± 0.033 vs LW = 0.598 ± 0.036, N = 0.623 ± 0.062, L = 0.697 ± 0.065 arbitrary intensity, P < 0.05). Despite accelerated tumor growth, LW animals exhibited a smaller reduction in lean carcass mass and muscle myosin maintenance, suggesting that excess leucine in the diet could counteract, at least in part, the high host protein wasting in weanling tumor-bearing rats.
Resumo:
Vascular endothelial growth factor (VEGF) is one of the most potent endothelial cell mitogens and plays a critical role in angiogenesis. Polymorphisms in this gene have been evaluated in patients with several types of cancer. The objectives of this study were to determine if there was an association of the -1154G/A polymorphism of the VEGF gene with head and neck cancer and the interaction of this polymorphism with lifestyle and demographic factors. Additionally, the distribution of the VEGF genotype was investigated with respect to the clinicopathological features of head and neck cancer patients. The study included 100 patients with histopathological diagnosis of head and neck squamous cell carcinoma. Patients with treated tumors were excluded. A total of 176 individuals 40 years or older were included in the control group and individuals with a family history of neoplasias were excluded. Analysis was performed after extraction of genomic DNA using the real-time PCR technique. No statistically significant differences between allelic and genotype frequencies of -1154G/A VEGF polymorphism were identified between healthy individuals and patients. The real-time PCR analyses showed a G allele frequency of 0.72 and 0.74 for patients and the control group, respectively. The A allele showed a frequency of 0.28 for head and neck cancer patients and 0.26 for the control group. However, analysis of the clinicopathological features showed a decreased frequency of the A allele polymorphism in patients with advanced (T3 and T4) tumors (OR = 0.36; 95%CI = 0.14-0.93; P = 0.0345). The -1154A allele of the VEGF gene may decrease the risk of tumor growth and be a possible biomarker for head and neck cancer. This polymorphism is associated with increased VEGF production and may have a prognostic importance.
Resumo:
Vaccination with xenogeneic and syngeneic endothelial cells is effective for inhibiting tumor growth. Nontoxic diphtheria toxin (CRM197), as an immunogen or as a specific inhibitor of heparin-binding EGF-like growth factor, has shown promising antitumor activity. Therefore, immunization with or administration of viable human umbilical vein endothelial cells (HUVECs) combined with CRM197 could have an enhanced antitumor effect. Six-week-old C57BL/6J male mice were vaccinated with viable HUVECs, 1 x 10(6) viable HUVECs combined with 100 μg CRM197, or 100 μg CRM197 alone by ip injections once a week for 4 consecutive weeks. RM-1 cells (5 x 10(5)) were inoculated by sc injection as a preventive procedure. During the therapeutic procedure, 6-week-old male C57BL/6J mice were challenged with 1 x 10(5) RM-1 cells, then injected sc with 1 x 10(6) viable HUVECs, 1 x 10(6) viable HUVECs + 100 μg CRM197, and 100 μg CRM197 alone twice a week for 4 consecutive weeks. Tumor volume and life span were monitored. We also investigated the effects of immunization with HUVECs on the aortic arch wall and on wound healing. Vaccination with or administration of viable HUVECs+CRM197 enhanced the inhibition of RM-1 prostatic carcinoma by 24 and 29%, respectively, and prolonged the life span for 3 and 4 days, respectively, compared with those of only vaccination or administration with viable HUVECs of tumor-bearing C57BL/6J mice. Furthermore, HUVEC immunization caused some damage to the aortic arch wall but did not have remarkable effects on the rate of wound healing; the wounds healed in approximately 13 days. Treatment with CRM197 in combination with viable HUVECs resulted in a marked enhancement of the antitumor effect in the preventive or therapeutic treatment for prostatic carcinoma in vivo, suggesting a novel combination for anti-cancer therapy.
Resumo:
Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.
Resumo:
We investigated the effect of photodynamic therapy (PDT) and of an anti-vascular cell adhesion molecule-1 (VCAM-1) monoclonal antibody on the in vivo growth of C6 glioma. Seven days after inoculation with C6 cells, adult male Wistar rats weighing 280-300 g with MRI-confirmed glioma were randomly assigned to 4 groups (N = 15 per group): PDT + VCAM-1 antibody group; PDT group; VCAM-1 antibody group; control group. Eight days after inoculation, hematoporphyrin monomethyl ether (HMME) was administered as a photosensitizer and PDT was performed at 630 nm (illumination intensity: 360 J/cm²) for 10 min. VCAM-1 antibody (50 µg/mL) was then administered (0.5 mL) through the tail vein every other day from day 8 to day 16. At day 21, 5 rats in each group were sacrificed and cancers were harvested for immunohistochemistry and Western blot assay for the detection of VCAM-1, and TUNEL assay was used to detect apoptosis. Survival and tumor volume were recorded in the remaining 10 rats in each group. In the PDT group, tumor growth was significantly suppressed (67.2%) and survival prolonged (89.3%), accompanied by an increase in apoptosis (369.5%), when compared to control. Furthermore, these changes were more pronounced in the PDT + VCAM-1 antibody group. After PDT, VCAM-1 expression was markedly increased (121.8%) and after VCAM-1 monoclonal antibody treatment, VCAM-1 expression was significantly reduced (58.2%). PDT in combination with VCAM-1 antibody can significantly inhibit the growth of C6 glioma and prolong survival. This approach may represent a promising strategy in the treatment of glioma.
Resumo:
DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growthin vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.
Resumo:
Bidirectional exchange of information between the cancer cells and their environment is essential for cancer to evolve. Cancer cells lose the ability to regulate their growth, gain the ability to detach from neighboring cells and finally some of the cells disseminate from the primary tumor and invade to the adjacent tissue. During cancer progression, cells acquire features that promote cancer motility and proliferation one of them being increased filopodia number. Filopodia are dynamic actin-rich structures extending from the leading edge of migrating cells and the main function of these structures is to serve as environmental sensors. It is nowadays widely appreciated, that not only the cancer cells, but also the surrounding of the tumor – the tumor microenvironment- contribute to cancer cell dissemination and tumor growth. Activated stromal fibroblasts, also known as cancer-associated fibroblasts (CAFs) actively participate on tumor progression. CAFs are the most abundant cell type surrounding the cancer cells and they are the main cell type producing the extracellular matrix (ECM) within tumor stroma. CAFs secrete growth factors to promote tumor growth, direct cancer cell invasion as well as modify the stromal ECM architecture. The aim of this thesis was to investigate the function of filopodia, particularly the role of filopodia-inducing protein Myosin-X (Myo10), in breast cancer cell invasion and metastasis. We found that Myo10 is an important regulator of basal type breast cancer spreading downstream of mutant p53. In addition, I investigated the role of CAFs and their secreted matrix on tumor growth. According to the results, CAF-derived matrix has altered organization and stiffness which induces the carcinoma cell proliferation via epigenetic mechanisms. I identified histone demethylase enzyme JMJD1a to be regulated by the stiffness and to participate in stiffness induced growth control.
Resumo:
The benzyl-substituted unbridged titanocene bis-[(p-methoxybenzyl)cyclopentadienyl] titanium(IV) dichloride (Titanocene Y) was tested in vitro against human renal cancer cells (Caki-1), in which it showed an IC50 value of 36 x 10(-6) mol/l. Titanocene Y was then given in vivo in doses of 10, 20, 30, 40 and 50 mg/kg on 5 consecutive days to Caki-1-bearing mice, and it showed concentration-dependent and statistically significant tumor growth reduction with respect to a solvent-treated control cohort. The maximum tolerable dose of Titanocene Y was determined to be 40 mg/kg and it showed significantly better tumor volume growth reduction than cisplatin given at a dose of 2 mg/kg. This superior activity of Titanocene Y with respect to cisplatin will hopefully lead to clinical tests against metastatic renal cell cancer in the near future.
Resumo:
In vivo and in vitro assays were performed with S91 murine melanoma cells aiming to investigate the effects of testosterone and photoperiod on tumor growth and melanogenesis (tyrosinase activity). In vivo assays were performed by inducing melanoma tumors in castrated mice receiving increasing concentrations of testosterone and submitted to varying photoperiod regimens. The results demonstrated that the increase of melanin content was higher in animals submitted to the longest days, thus demonstrating the importance of photoperiod length in melanin synthesis. Increase in tumor growth and protein content was observed in testosterone-treated animals submitted to 12L:12D; in testosterone-treated animals submitted to 4L:20D and 20L:4D tumor growth was significantly smaller. In S91 cultured cells, testosterone increased cell proliferation and reduced tyrosinase activity in a dose-dependent manner. Radioactive binding assays demonstrated that the hormone was acting through low affinity testosterone receptors, since the presence of aromatase inhibitor did not affect the binding assay in a statistically significant way, and all the in vitro experiments were performed in the presence of the inhibitor. Our in vivo data added to the in vitro results corroborate the hypothesis that S91 melanoma cells directly respond to testosterone and that this effect is modulated by light.
Resumo:
Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (170, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats (similar to 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats (similar to 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.
Resumo:
The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.
Resumo:
Bone tumor incidence in women peaks at age 50-60, coinciding with the menopause. That estrogen (E2) and triiodothyronine (T3) interact in bone metabolism has been well established. However, few data on the action of these hormones are available. Our purpose was to determine the role of E2 and T3 in the expression of bone activity markers, namely alkaline phosphatase (AP) and receptor activator of nuclear factor kappa B ligand (RANKL). Two osteosarcoma cell lines: MG-63 (which has both estrogen (ER) and thyroid hormone (TR) receptors) and SaOs-29 (ER receptors only) were treated with infraphysiological E2 associated with T3 at infraphysiological, physiological, and supraphysiological concentrations. Real-time RT-PCR was used for expression analysis. Our results show that, in MG-63 cells, infraphysiological E2 associated with supraphysiological T3 increases AP expression and decreases RANKL expression, while infraphysiological E2 associated with either physiological or supraphysiological T3 decreases both AP and RANKL expression. On the other hand, in SaOs-2 cells, the same hormone combinations had no significant effect on the markers` expression. Thus, the analysis of hormone receptors was shown to be crucial for the assessment of tumor potential growth in the face of hormonal changes. Special care should be provided to patients with T3 and E2 hormone receptors that may increase tumor growth. Copyright (C) 2007 John Wiley & Sons, Ltd.