955 resultados para Submerged-arc-welding
Resumo:
Numerical simulations for mixed convection of micropolar fluid in an open ended arc-shape cavity have been carried out in this study. Computation is performed using the Alternate Direct Implicit (ADI) method together with the Successive Over Relaxation (SOR) technique for the solution of governing partial differential equations. The flow phenomenon is examined for a range of values of Rayleigh number, 102 ≤ Ra ≤ 106, Prandtl number, 7 ≤ Pr ≤ 50, and Reynolds number, 10 ≤ Re ≤ 100. The study is mainly focused on how the micropolar fluid parameters affect the fluid properties in the flow domain. It was found that despite the reduction of flow in the core region, the heat transfer rate increases, whereas the skin friction and microrotation decrease with the increase in the vortex viscosity parameter, Δ.
Resumo:
The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.
Resumo:
Long undersea debris runout can be facilitated by a boundary layer formed by weak marine sediments under a moving slide mass. Undrained loading of such offshore sediment results in a profound drop of basal shear resistance, compared to subaerial shear resistance, enabling long undersea runout. Thus large long-runout submarine landslides are not truly enigmatic (Voight and Elsworth 1992, 1997), but are understandable in terms of conventional geotechnical principles. A corollary is that remoulded undrained strength, and not friction angle, should be used for basal resistance in numerical simulations. This hypothesis is testable via drilling and examining the structure at the soles of undersea debris avalanches for indications of incorporation of sheared marine sediments, by tests of soil properties, and by simulations. Such considerations of emplacement process are an aim of ongoing research in the Lesser Antilles (Caribbean Sea), where multiple offshore debris avalanche and dome-collapse debris deposits have been identified since 1999 on swath bathymetric surveys collected in five oceanographic cruises. This paper reviews the prehistoric and historic collapses that have occurred offshore of Antilles arc islands and summarizes ongoing research on emplacement processes.
Resumo:
The recent history of the Soufrière Hills Volcano, Montserrat, Lesser Antilles volcanic arc, is reconstructed using data obtained from recently drilled submarine cores.Tephra layers in these cores preserve a record of the volcanic history of Montserrat back to ~250 ka on the basis of micropaleontology and stable isotope stratigraphy. Stratigraphic relationships identified in the cores collected in 2002 and 2005 document the fate of both pyroclastic flows entering the ocean to the east of Montserrat and carbonate-rich turbidites sourced from the carbonate platformssurrounding the islands of the Lesser Antilles. Using oxygen isotope stratigraphy, micropalaeontological analysis and Carbon-14 dating, it can be shown that three significant volcanic events, including the on-going eruption, have occurred over the last 12 ka. Preceding this was a time of volcanic quiescence, with three carbonate-rich turbidite events being documented in many of the cores. Our data suggest that these events occurred during Marine Isotope Stage 2, following the Last Glacial Maximum (LGM) and onset of post-glacial sea level rise.
Resumo:
Understanding the link between tectonic-driven extensional faulting and volcanism is crucial from a hazard perspective in active volcanic environments, while ancient volcanic successions provide records on how volcanic eruption styles, compositions, magnitudes and frequencies can change in response to extension timing, distribution and intensity. Significantly, incorrect tectonic interpretations can be made when the spatial-temporal-compositional trends of, and source contributions to magmatism are not properly considered. This study draws on intimate relationships of volcanism and extension preserved in the Sierra Madre Occidental (SMO) and Gulf of California (GoC) regions of western Mexico. Here, a major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a dominantly bimodal and mixed effusive-explosive volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Rhyolitic dome fields were emplaced along graben edges and at intersections of cross-graben and graben-parallel structures during early stages of graben development. Concomitant with this change in rhyolite eruption style was a change in crustal source as revealed by zircon chronochemistry with rapid rates of rhyolite magma generation due to remelting of mid- to upper crustal, highly differentiated igneous rocks emplaced during earlier SMO magmatism. Extension became more focused ~18 Ma resulting in volcanic activity being localised along the site of GoC opening. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. This compositional change resulted from increased mixing of basaltic and rhyolitic magmas rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate. A poor understanding of space-time relationships of volcanism and extension has thus led to incorrect past tectonic interpretations of Comondú-age volcanism.
Resumo:
The composition of the lithosphere can be fundamentally altered by long-lived subduction processes such that subduction-modified lithosphere can survive for 100's Myrs. Incorrect petrotectonic interpretations result when spatial-temporal-compositional trends of, and source contributions to, magmatism are not properly considered. Western Mexico has had protracted Cenozoic magmatism developed mostly in-board of active oceanic plate subduction beneath western North America. A broad range of igneous compositions from basalt to high-silica rhyolite were erupted with intermediate to silicic compositions in particular, showing calc-alkaline and other typical subduction-related geochemical signatures. A major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a bimodal volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Extension became more focussed ~18 Ma resulting in localised volcanic activity along the future site of the Gulf of California. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. Past tectonic interpretations of Comondú-age volcanism may have been incorrect as these regional temporal-compositional changes are alternatively interpreted as a result of increased mixing of mantle-derived basaltic and crust-derived rhyolitic magmas in an active rift environment rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate.
Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns
Resumo:
The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.
Resumo:
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across 5 centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity-modulated radiotherapy (IMRT) and 47 treated with volumetric-modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organ-at-risk sparing, through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each organ-at-risk. Statistical significance was evaluated using two-tailed Welch’s T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the organs-at-risk: with increased compliance with recommended organ-at-risk dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.
Resumo:
Graphene and carbon nanotubes are the most promising nanomaterials for application in various modern nanodevices. The successful production of the nanotubes and graphene in a single process was achieved by using a magnetically enhanced arc discharge in helium atmosphere between carbon and metal electrodes. A 3-D fluid model has been used to investigate the discharge parameters.
Resumo:
Arc discharge ablation with a catalyst-filled carbon anode in a helium background was used for the synthesis of graphene and carbon nanotubes. In this paper, we present the results of the numerical simulation of the distribution of various plasma parameters in discharge, as well as the distribution of carbon flux on the nanotube surface, for the typical discharge with an arc current of 60 A and a background gas pressure of 68 kPa.
Resumo:
It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 μm also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.
Resumo:
A novel approach to large-scale production of high-quality graphene flakes in magnetically-enhanced arc discharges between carbon electrodes is reported. A non-uniform magnetic field is used to control the growth and deposition zones, where the Y-Ni catalyst experiences a transition to the ferromagnetic state, which in turn leads to the graphene deposition in a collection area. The quality of the produced material is characterized by the SEM, TEM, AFM, and Raman techniques. The proposed growth mechanism is supported by the nucleation and growth model.
Resumo:
The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.
Resumo:
The ability to control the properties of single-wall nanotubes (SWNTs) produced in the arc discharge is important for many practical applications. Our experiments suggest that the length of SWNTs significantly increases (up to 4000 nm), along with the purity of the carbon deposit, when the magnetic field is applied to arc discharge. Scanning electron microscopy and transmission electron microscopy analyses have demonstrated that the carbon deposit produced in the magnetic-field-enhanced arc mainly consists of the isolated and bunched SWNTs. A model of a carbon nanotube interaction and growth in the thermal plasma was developed, which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge, and energy transfer processes between nanotube and plasma. It is shown that the nanotube charge with respect to the plasma as well as nanotube length depend on plasma density and electric field in the interelectrode gap. For instance, nanotube charge changes from negative to positive value with an electron density decrease. The numerical simulations based on the Monte Carlo technique were performed, which explain an increase in the nanotubes produced in the magnetic-field-enhanced arc discharge. © 2008 American Institute of Physics.