953 resultados para Sub-wavelength structures
Resumo:
Optical properties of InGaAs/GaAs self-organized quantum dots (QDs) structures covered by InxGa1-x As capping layers with different In contents chi ranging from 0. 0 (i.e., GaAs) to 0. 3 were investigated systematically by photoluminescence (PL) measurements. Red-shift of the PL peak energies of the InAs QDs covered by InxGa1-xAs layers with narrower linewidth and less shifts of the PL emissions via variations of the measurement temperatures were observed compared with that covered by GaAs layers. Calculation and structural measurements confirm that the red-shift of the PL peaks are mainly due to strain reduction and suppression of the In/Ga intermixing due to the InxGa1-xAs cover layer, leading to better size uniformity and thus narrowing the PL linewidth of the QDs. 1. 3 mum wavelength emission with very narrow linewidth of only 19. 2 meV at room temperature was successfully obtained from the In0.5Ga0.5As/GaAs QDs covered by the In0.2Ga0.8As layer.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
Various techniques on the growth of self-assembled compound semiconductor nano-structures (quantum dots, QDs) have been tried to enhance the controlling on size, density, emitting wavelength, uniformity in size and ordering in location of the QDs. Optimized growth conditions have been used in the application of the QD materials in opto-electronic devices. High-power long-lifetime quantum-dot laser-diodes (QD-LDs) emitting near 1 mu m, QD-LDs emitting in red-light range, 1.3 mu m QD-LDs on GaAs substrate and quantum-dot super-luminescent diodes (QD-SLDs) have successfully been achieved.
Resumo:
This paper discusses the algorithm on the distance from a point and an infinite sub-space in high dimensional space With the development of Information Geometry([1]), the analysis tools of points distribution in high dimension space, as a measure of calculability, draw more attention of experts of pattern recognition. By the assistance of these tools, Geometrical properties of sets of samples in high-dimensional structures are studied, under guidance of the established properties and theorems in high-dimensional geometry.
Resumo:
The influences of channel layer width, spacer layer width, and delta-doping density on the electron density and its distribution in the AlSb/InAs high electron mobility transistors (HEMTs) have been studied based on the self-consistent calculation of the Schrodinger and Poisson equations with both the strain and nonparabolicity effects being taken into account. The results show that, having little influence on the total two dimensional electron gas (2DEG) concentration in the channel, the HEMT's channel layer width has some influence on the electron mobility, with a channel as narrow as 100-130 angstrom being more beneficial. For the AlSb/InAs HEMT with a Te delta-doped layer, the 2DEG concentration as high as 9.1 X 10(12) cm(-2) can be achieved in the channel by enhancing the delta-doping concentration without the occurrence of the parallel conduction. When utilizing a Si delta-doped InAs layer as the electron-supplying layer of the AlSb/InAs HEMT, the effect of the InAs donor layer thickness is studied on the 2DEG concentration. To obtain a higher 2DEG concentration in the channel, it is necessary to use an InAs donor layer as thin as 4 monolayer. To test the validity of our calculation, we have compared our theoretical results (2DEG concentration and its distribution in different sub-bands of the channel) with the experimental ones done by other groups and show that our theoretical calculation is consistent with the experimental results.
Resumo:
Based on the comprehensive interpretation and study of the Neogene fracture system and diapiric structure, it can be concluded that the diapiric structures, high-angle fractures and vertical fissure system are the main gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, northern South China Sea. The Neogene fractures widely developed in the study area may be classed into two groups: NW (NNW)-trending and NE (NNE)-trending. The first group was active in the Late Miocene, while the second one was active since the Pliocene. The NE (NNE)-trending fractures were characterized by lower activity strength and larger scale, and cut through the sediment layers deposited since the Pliocene. Within the top sediment layers, the high-angle fracture and vertical fissure system was developed. The diapiric structures display various types such as a turtle-back-like arch, weak piercing, gas chimney, and fracture (or crack, fissure). On the seismic profile, some diapiric structures show the vertical chimney pathway whose top is narrow and the bottom is wide, where some ones extend horizontally into pocket or flower-shaped structures and formed the seismic reflection chaotic zones. Within the overlying sediment layers of the diapiric structure, the tree branch, flower-shaped high-angle fractures and vertical fissures were developed and became the pathway and migration system of the gas-bearing fluid influx. In the study area, the diapiric structures indicate a high temperature/over pressure system ever developed. Closely associated and abundant bright-spots show the methane-bearing fluid influx migrated vertically or horizontally through the diapiric structures, high-angle fractures and vertical fissures. In the place where the temperature and pressure conditions were favor for the formation of gas hydrate, the hydrate reservoir deposition sub-system was developed.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Infrared absorption due to a collective excitation of a two-dimensional electronic gas was observed in GaAs/AlxGa1-xAs multiple-quantum wells when the incident light is polarized parallel to the quantum-well plane. We attribute this phenomenon to a plasma oscillation in the quantum wells. The measured wavelength of the absorption peak due to the plasma oscillation agrees with our theoretical analysis. In addition, in this study the plasma-phonon coupling effect is also fitted to the experimental result. We show that the absorption is not related to the intersubband transitions but to the intrasubband transition, which originates from a plasma oscillation.
Resumo:
Self-organized In_(0.5)Ga_(0.5)As/GaAs quantum island structure emitting at 1. 35 (im at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs)_1/( GaAs)_1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In_(0.5)Ga_(0.5)As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
Resumo:
Si1-xGex/Si optoelectronic devices are promising for the monolithic integration with silicon-based microelectronics. SiGe/Si MQW RCE-PD (Resonant-Cavity-Enhanced photodiodes) with different structures were investigated in this work. Design and fabrication of top- and bottom-incident RCE-PD, such as growth of SiGe MQW (Multiple Quantum Wells) on Si and SOI (Si on insulator) wafers, bonding between SiGe epitaxial wafer and SOR (Surface Optical Reflector) consisting Of SiO2/Si DBR (Distributed Bragg Reflector) films on Si, and performances of RCE-PD, were presented. The responsivity of 44mA/W at 1.314 mum and the FWHM of 6nm were obtained at bias of 10V. The highest external quantum efficiency measured in the investigation is 4.2%.
Resumo:
The atom pencil we describe here is a versatile tool that writes arbitrary structures by atomic deposition in a serial lithographic process. This device consists of a transversely laser-cooled and collimated cesium atomic beam that passes through a 4-pole atom-flux concentrator and impinges on to micron- and sub-micron-sized apertures. The aperture translates above a fixed substrate and enables the writing of sharp features with sizes down to 280 nm. We have investigated the writing and clogging properties of an atom pencil tip fabricated from silicon oxide pyramids perforated at the tip apex with a sub-micron aperture.
Resumo:
This thesis investigated the block copolymer (BCP) thin film characteristics and pattern formation using a set of predetermined molecular weights of PS-b-PMMA and PS-b-PDMS. Post BCP pattern fabrication on the required base substrate a dry plasma etch process was utilised for successful pattern transfer of the BCP resist onto underlying substrate. The resultant sub-10 nm device features were used in front end of line (FEoL) fabrication of active device components in integrated circuits (IC). The potential use of BCP templates were further extended to metal and metal-oxide nanowire fabrication. These nanowires were further investigated in real-time applications as novel sensors and supercapacitors.
Resumo:
Metal oxide clusters of sub-nm dimensions dispersed on a metal oxide support are an important class of catalytic materials for a number of key chemical reactions, showing enhanced reactivity over the corresponding bulk oxide. In this paper we present the results of a density functional theory study of small sub-nm TiO2 clusters, Ti2O4, Ti3O6 and Ti4O8 supported on the rutile (110) surface. We find that all three clusters adsorb strongly with adsorption energies ranging from -3 eV to -4.5 eV. The more stable adsorption structures show a larger number of new Ti-O bonds formed between the cluster and the surface. These new bonds increase the coordination of cluster Ti and O as well as surface oxygen, so that each has more neighbours. The electronic structure shows that the top of the valence band is made up of cluster derived states, while the conduction band is made up of Ti 3d states from the surface, resulting in a reduction of the effective band gap and spatial separation of electrons and holes after photon absorption, which shows their potential utility in photocatalysis. To examine reactivity, we study the formation of oxygen vacancies in the cluster-support system. The most stable oxygen vacancy sites on the cluster show formation energies that are significantly lower than in bulk TiO2, demonstrating the usefulness of this composite system for redox catalysis.
Resumo:
Micromagnetic ripple structures on the surfaces of thick specimens of ultra-soft magnetic material having strong surface anisotropy Ks favouring out-of-surface magnetization have been calculated. These ripples have wavelengths of the order of 0.1 μm and extend to a depth ∼ √A/Ms, where A is the exchange constant and Ms is the saturation magnetization. The wave-vectors of the ripple structures are either transverse or parallel to the bulk magnetization. Both structures have lower energy than the one-dimensional structure discussed by O'Handley and Woods, and they exhibit stronger normal magnetization. The transverse structure requires a surface anisotropy Ks ≥ 0.80K0, where is that required for the one-dimensional structure. The threshold for longitudinal ripples is 0.84K0. It is suggested that the transverse structure probably constitutes the ground state. The magnitudes of Ks and A should be obtainable from measurements of the ripple wavelength and amplitude, and Ms.