977 resultados para Static analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The phenomenon of self-induced vibrations of prismatic beams in a cross-flow has been studied for decades, but it is still of great interest due to their important effects in many different industrial applications. This paper presents the experimental study developed on a prismatic beam with H-section.The aim of this analysis is to add some additional insight into the behaviour of the flow around this type of bodies, in order to reduce galloping and even to avoid it. The influence of some relevant geometrical parameters that define the H-section on the translational galloping behaviour of these beams has been analysed. Wind loads coefficients have been measured through static wind tunnel tests and the Den Hartog criterion applied to elucidate the influence of geometrical parameters on the galloping properties of the bodies under consideration.These results have been completed with surface pressure distribution measurements and, besides, dynamic tests have been also performed to verify the static criterion. Finally, the morphology of the flow past the tested bodies has been visualised by using smoke visualization techniques. Since the rectangular section beam is a limiting case of the H-section configuration, the results here obtained are compared with the ones published in the literature concerning rectangular configurations; the agreement is satisfactory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En la actualidad existe un gran conocimiento en la caracterización de rellenos hidráulicos, tanto en su caracterización estática, como dinámica. Sin embargo, son escasos en la literatura estudios más generales y globales de estos materiales, muy relacionados con sus usos y principales problemáticas en obras portuarias y mineras. Los procedimientos semi‐empíricos para la evaluación del efecto silo en las celdas de cajones portuarios, así como para el potencial de licuefacción de estos suelos durantes cargas instantáneas y terremotos, se basan en estudios donde la influencia de los parámetros que los rigen no se conocen en gran medida, dando lugar a resultados con considerable dispersión. Este es el caso, por ejemplo, de los daños notificados por el grupo de investigación del Puerto de Barcelona, la rotura de los cajones portuarios en el Puerto de Barcelona en 2007. Por estos motivos y otros, se ha decidido desarrollar un análisis para la evaluación de estos problemas mediante la propuesta de una metodología teórico‐numérica y empírica. El enfoque teórico‐numérico desarrollado en el presente estudio se centra en la determinación del marco teórico y las herramientas numéricas capaces de solventar los retos que presentan estos problemas. La complejidad del problema procede de varios aspectos fundamentales: el comportamiento no lineal de los suelos poco confinados o flojos en procesos de consolidación por preso propio; su alto potencial de licuefacción; la caracterización hidromecánica de los contactos entre estructuras y suelo (camino preferencial para el flujo de agua y consolidación lateral); el punto de partida de los problemas con un estado de tensiones efectivas prácticamente nulo. En cuanto al enfoque experimental, se ha propuesto una metodología de laboratorio muy sencilla para la caracterización hidromecánica del suelo y las interfaces, sin la necesidad de usar complejos aparatos de laboratorio o procedimientos excesivamente complicados. Este trabajo incluye por tanto un breve repaso a los aspectos relacionados con la ejecución de los rellenos hidráulicos, sus usos principales y los fenómenos relacionados, con el fin de establecer un punto de partida para el presente estudio. Este repaso abarca desde la evolución de las ecuaciones de consolidación tradicionales (Terzaghi, 1943), (Gibson, English & Hussey, 1967) y las metodologías de cálculo (Townsend & McVay, 1990) (Fredlund, Donaldson and Gitirana, 2009) hasta las contribuciones en relación al efecto silo (Ranssen, 1985) (Ravenet, 1977) y sobre el fenómeno de la licuefacción (Casagrande, 1936) (Castro, 1969) (Been & Jefferies, 1985) (Pastor & Zienkiewicz, 1986). Con motivo de este estudio se ha desarrollado exclusivamente un código basado en el método de los elementos finitos (MEF) empleando el programa MATLAB. Para ello, se ha esablecido un marco teórico (Biot, 1941) (Zienkiewicz & Shiomi, 1984) (Segura & Caron, 2004) y numérico (Zienkiewicz & Taylor, 1989) (Huerta & Rodríguez, 1992) (Segura & Carol, 2008) para resolver problemas de consolidación multidimensional con condiciones de contorno friccionales, y los correspondientes modelos constitutivos (Pastor & Zienkiewicz, 1986) (Fiu & Liu, 2011). Asimismo, se ha desarrollado una metodología experimental a través de una serie de ensayos de laboratorio para la calibración de los modelos constitutivos y de la caracterización de parámetros índice y de flujo (Castro, 1969) (Bahda 1997) (Been & Jefferies, 2006). Para ello se han empleado arenas de Hostun como material (relleno hidráulico) de referencia. Como principal aportación se incluyen una serie de nuevos ensayos de corte directo para la caracterización hidromecánica de la interfaz suelo – estructura de hormigón, para diferentes tipos de encofrados y rugosidades. Finalmente, se han diseñado una serie de algoritmos específicos para la resolución del set de ecuaciones diferenciales de gobierno que definen este problema. Estos algoritmos son de gran importancia en este problema para tratar el procesamiento transitorio de la consolidación de los rellenos hidráulicos, y de otros efectos relacionados con su implementación en celdas de cajones, como el efecto silo y la licuefacciones autoinducida. Para ello, se ha establecido un modelo 2D axisimétrico, con formulación acoplada u‐p para elementos continuos y elementos interfaz (de espesor cero), que tratan de simular las condiciones de estos rellenos hidráulicos cuando se colocan en las celdas portuarias. Este caso de estudio hace referencia clara a materiales granulares en estado inicial muy suelto y con escasas tensiones efectivas, es decir, con prácticamente todas las sobrepresiones ocasionadas por el proceso de autoconsolidación (por peso propio). Por todo ello se requiere de algoritmos numéricos específicos, así como de modelos constitutivos particulares, para los elementos del continuo y para los elementos interfaz. En el caso de la simulación de diferentes procedimientos de puesta en obra de los rellenos se ha requerido la modificacion de los algoritmos empleados para poder así representar numéricamente la puesta en obra de estos materiales, además de poder realizar una comparativa de los resultados para los distintos procedimientos. La constante actualización de los parámetros del suelo, hace también de este algoritmo una potente herramienta que permite establecer un interesante juego de perfiles de variables, tales como la densidad, el índice de huecos, la fracción de sólidos, el exceso de presiones, y tensiones y deformaciones. En definitiva, el modelo otorga un mejor entendimiento del efecto silo, término comúnmente usado para definir el fenómeno transitorio del gradiente de presiones laterales en las estructuras de contención en forma de silo. Finalmente se incluyen una serie de comparativas entre los resultados del modelo y de diferentes estudios de la literatura técnica, tanto para el fenómeno de las consolidaciones por preso propio (Fredlund, Donaldson & Gitirana, 2009) como para el estudio del efecto silo (Puertos del Estado, 2006, EuroCódigo (2006), Japan Tech, Stands. (2009), etc.). Para concluir, se propone el diseño de un prototipo de columna de decantación con paredes friccionales, como principal propuesta de futura línea de investigación. Wide research is nowadays available on the characterization of hydraulic fills in terms of either static or dynamic behavior. However, reported comprehensive analyses of these soils when meant for port or mining works are scarce. Moreover, the semi‐empirical procedures for assessing the silo effect on cells in floating caissons, and the liquefaction potential of these soils during sudden loads or earthquakes are based on studies where the underlying influence parameters are not well known, yielding results with significant scatter. This is the case, for instance, of hazards reported by the Barcelona Liquefaction working group, with the failure of harbor walls in 2007. By virtue of this, a complex approach has been undertaken to evaluate the problem by a proposal of numerical and laboratory methodology. Within a theoretical and numerical scope, the study is focused on the numerical tools capable to face the different challenges of this problem. The complexity is manifold; the highly non‐linear behavior of consolidating soft soils; their potentially liquefactable nature, the significance of the hydromechanics of the soil‐structure contact, the discontinuities as preferential paths for water flow, setting “negligible” effective stresses as initial conditions. Within an experimental scope, a straightforward laboratory methodology is introduced for the hydromechanical characterization of the soil and the interface without the need of complex laboratory devices or cumbersome procedures. Therefore, this study includes a brief overview of the hydraulic filling execution, main uses (land reclamation, filled cells, tailing dams, etc.) and the underlying phenomena (self‐weight consolidation, silo effect, liquefaction, etc.). It comprises from the evolution of the traditional consolidation equations (Terzaghi, 1943), (Gibson, English, & Hussey, 1967) and solving methodologies (Townsend & McVay, 1990) (Fredlund, Donaldson and Gitirana, 2009) to the contributions in terms of silo effect (Ranssen, 1895) (Ravenet, 1977) and liquefaction phenomena (Casagrande, 1936) (Castro, 1969) (Been & Jefferies, 1985) (Pastor & Zienkiewicz, 1986). The novelty of the study lies on the development of a Finite Element Method (FEM) code, exclusively formulated for this problem. Subsequently, a theoretical (Biot, 1941) (Zienkiewicz and Shiomi, 1984) (Segura and Carol, 2004) and numerical approach (Zienkiewicz and Taylor, 1989) (Huerta, A. & Rodriguez, A., 1992) (Segura, J.M. & Carol, I., 2008) is introduced for multidimensional consolidation problems with frictional contacts and the corresponding constitutive models (Pastor & Zienkiewicz, 1986) (Fu & Liu, 2011). An experimental methodology is presented for the laboratory test and material characterization (Castro 1969) (Bahda 1997) (Been & Jefferies 2006) using Hostun sands as reference hydraulic fill. A series of singular interaction shear tests for the interface calibration is included. Finally, a specific model algorithm for the solution of the set of differential equations governing the problem is presented. The process of consolidation and settlements involves a comprehensive simulation of the transient process of decantation and the build‐up of the silo effect in cells and certain phenomena related to self‐compaction and liquefaction. For this, an implementation of a 2D axi‐syimmetric coupled model with continuum and interface elements, aimed at simulating conditions and self‐weight consolidation of hydraulic fills once placed into floating caisson cells or close to retaining structures. This basically concerns a loose granular soil with a negligible initial effective stress level at the onset of the process. The implementation requires a specific numerical algorithm as well as specific constitutive models for both the continuum and the interface elements. The simulation of implementation procedures for the fills has required the modification of the algorithm so that a numerical representation of these procedures is carried out. A comparison of the results for the different procedures is interesting for the global analysis. Furthermore, the continuous updating of the model provides an insightful logging of variable profiles such as density, void ratio and solid fraction profiles, total and excess pore pressure, stresses and strains. This will lead to a better understanding of complex phenomena such as the transient gradient in lateral pressures due to silo effect in saturated soils. Interesting model and literature comparisons for the self‐weight consolidation (Fredlund, Donaldson, & Gitirana, 2009) and the silo effect results (Puertos del Estado (2006), EuroCode (2006), Japan Tech, Stands. (2009)). This study closes with the design of a decantation column prototype with frictional walls as the main future line of research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Frequency Response Analysis is a well-known technique for the diagnosis of power transformers. Currently, this technique is under research for its application in rotary electrical machines. This paper presents significant results on the application of Frequency Response Analysis to fault detection in field winding of synchronous machines with static excitation. First, the influence of the rotor position on the frequency response is evaluated. Secondly, some relevant test results are shown regarding ground fault and inter-turn fault detection in field windings at standstill condition. The influence of the fault resistance value is also taken into account. This paper also studies the applicability of Frequency Response Analysis in fault detection in field windings while rotating. This represents an important feature because some defects only appear with the machine rated speed. Several laboratory test results show the applicability of this fault detection technique in field windings at full speed with no excitation current.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photocopy of original: Berkeley : Structural Engineering Laboratory, University of California, 1974.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Upper airway measurement can be important for the diagnosis of breathing disorders. Acoustic reflection (AR) is an accepted tool for studying the airway. Our objective was to investigate the differences between cone-beam computed tomography (CBCT) and AR in calculating airway volumes and areas. METHODS: Subjects with prescribed CBCT images as part of their records were also asked to have AR performed. A total of 59 subjects (mean age, 15 ± 3.8 years) had their upper airway (5 areas) measured from CBCT images, acoustic rhinometry, and acoustic pharyngometry. Volumes and minimal cross-sectional areas were extracted and compared with software. RESULTS: Intraclass correlation on 20 randomly selected subjects, remeasured 2 weeks apart, showed high reliability (r >0.77). Means of total nasal volume were significantly different between the 2 methods (P = 0.035), but anterior nasal volume and minimal cross-sectional area showed no differences (P = 0.532 and P = 0.066, respectively). Pharyngeal volume showed significant differences (P = 0.01) with high correlation (r = 0.755), whereas pharyngeal minimal cross-sectional area showed no differences (P = 0.109). The pharyngeal volume difference may not be considered clinically significant, since it is 758 mm3 for measurements showing means of 11,000 ± 4000 mm3. CONCLUSIONS: CBCT is an accurate method for measuring anterior nasal volume, nasal minimal cross-sectional area, pharyngeal volume, and pharyngeal minimal cross-sectional area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[ES]This paper describes an analysis performed for facial description in static images and video streams. The still image context is first analyzed in order to decide the optimal classifier configuration for each problem: gender recognition, race classification, and glasses and moustache presence. These results are later applied to significant samples which are automatically extracted in real-time from video streams achieving promising results in the facial description of 70 individuals by means of gender, race and the presence of glasses and moustache.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate by photoelastic analysis stress distribution on short and long implants of two dental implant systems with 2-unit implant-supported fixed partial prostheses of 8 mm and 13 mm heights. Sixteen photoelastic models were divided into 4 groups: I: long implant (5 × 11 mm) (Neodent), II: long implant (5 × 11 mm) (Bicon), III: short implant (5 × 6 mm) (Neodent), and IV: short implants (5 × 6 mm) (Bicon). The models were positioned in a circular polariscope associated with a cell load and static axial (0.5 Kgf) and nonaxial load (15°, 0.5 Kgf) were applied to each group for both prosthetic crown heights. Three-way ANOVA was used to compare the factors implant length, crown height, and implant system (α = 0.05). The results showed that implant length was a statistically significant factor for both axial and nonaxial loading. The 13 mm prosthetic crown did not result in statistically significant differences in stress distribution between the implant systems and implant lengths studied, regardless of load type (P > 0.05). It can be concluded that short implants showed higher stress levels than long implants. Implant system and length was not relevant factors when prosthetic crown height were increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present analysis takes into account the acceleration term in the differential equation of motion to obtain exact dynamic solutions concerning the groundwater flow towards a well in a confined aquifer. The results show that the error contained in the traditional quasi-static solution is very small in typical situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.