873 resultados para Stand-Alone and Grid Connected PV applications
Resumo:
Gingival recession was created in six mongrel dogs. The dogs were divided into two groups based on treatment: group 1-AlloDerm only, group 2-AlloDerm + Emdogain. The histologic results were compared. At the end of the study, the mean values were, for groups I and 2, respectively: 0.06 and 0.32 mm for cementum regeneration; -0.75 and -0.86 mm for bone regeneration; -2.15 and -3.11 mm for attachment level; and 4.90 and 5.51 mm for defect extent. The epithelial formation parameter was 2.88 mm in group 1 and 2.15 mm in group 2, which was a statistically significant difference. It could be concluded that Emdogain did not result in beneficial effects when associated with AlloDerm.
Resumo:
Inteins or internal proteins are coding sequences that are transcribed and translated with flanking sequences (exteins). After translation, the inteins are excised by an autocatalytic process and the host protein assumes its normal conformation and develops its expected function. These parasitic genetic elements have been found in important, conserved proteins in all three domains of life. Most of the eukaryotic inteins are present in the fungi kingdom and the PRP8 intein is one of the most widespread inteins, occurring in important pathogens such as Cryptococcus neoformans (varieties grubii and neoformans), Cryptococcus gattii, Histoplasma capsulatum and Paracoccidioides brasiliensis. The knowledge of conserved and non-conserved domains in inteins have opened up new opportunities for the study of population variability in pathogenic fungi, including their phylogenetic relationships and recognition or diagnoses of species. Furthermore, inteins in pathogenic fungi should also be considered a promising therapeutic drug target, since once the autocatalytic splicing is inhibited, the host protein, which is typically vital, will not be able to perform its normal function and the fungal cell will not survive or reproduce.
Resumo:
Nanostructured polyaniline-modified electrodes were fabricated via the electrostatic layer-by-layer (LbL) technique where polyaniline (PANI) was assembled with one of three tetrasulfonated metallic phthalocyanines, viz. iron (FeTsPc), nickel (NiTsPc) and copper (CuTsPc). The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the 800 run absorption band due to PANI. Infrared spectroscopy in the transmission mode suggested specific interactions between PANI and the phthalocyanines, such as those between SO3- groups from the phthalocyanines and the protonated NH group from PANI. The films were employed to detect dopamine (DA) using cyclic voltammetry. In the presence of dopamine the PANI-based LbL films showed additional redox peaks at ca. 230 and 190 mV the oxidation peak increased linearly with the concentration of DA in the electrolytic solution. Films comprising PANI/FeTsPc were able to distinguish between DA and ascorbic acid (AA), which acts as a natural interferent in biological fluids. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials.
Resumo:
Thrips palmi Karny (Thysanoptera: Thripidae) is a phytophagous insect associated with the reduction of eggplant productivity. The aim of this study was to evaluate the effect of calcium silicate and/or an organic mineral fertilizer, together or separately, in increasing the resistance of eggplants to T. palmi. The treatments were calcium silicate, organic mineral fertilizer, calcium silicate associated with this fertilizer and the control. Mortality and number of lesions caused by nymphs of this insect on eggplant leaves were evaluated after 3, 6, 9 and 12 leaf applications of these products. The calcium silicate and the organic mineral fertilizer reduced both the population of T. palmi and the damage caused by its nymphs, suggesting a possible increase in eggplant resistance to this pest as a result of the treatments.
Resumo:
This paper presents a pulsewidth modulation dc-dc nonisolated buck converter using the three-state switching cell, constituted by two active switches, two diodes, and two coupled inductors. Only part of the load power is processed by the active switches, reducing the peak current through the switches to half of the load current, as higher power levels can then be achieved by the proposed topology. The volume of reactive elements, i.e., inductors and capacitors, is also decreased since the ripple frequency of the output voltage is twice the switching frequency. Due to the intrinsic characteristics of the topology, total losses are distributed among all semiconductors. Another advantage of this converter is the reduced region for discontinuous conduction mode when compared to the conventional buck converter or, in other words, the operation range in continuous conduction mode is increased, as demonstrated by the static gain plot. The theoretical approach is detailed through qualitative and quantitative analyses by the application of the three-state switching cell to the buck converter operating in nonoverlapping mode $(D < 0.5)$. Besides, the mathematical analysis and development of an experimental prototype rated at 1 kW are carried out. The main experimental results are presented and adequately discussed to clearly identify its claimed advantages. © 1986-2012 IEEE.
Resumo:
Introduction: The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere and to live on artificial surfaces and to resist to the host immune factors and antibiotics. Staphylococcal infections have become increasingly difficult to treat due their antibiotic resistance. Therefore, there is a continuous need for new and effective treatment alternatives against staphylococcal infections. The main goal of this study was to test N-acetylcysteine (NAC) and vancomycin alone and in combination against S. epidermidis and S. aureus biofilms. Methods: Biofilms were treated with NAC at minimum inhibitory concentration (MIC) and 10 × MIC concentrations and vancomycin at MIC and peak serum concentrations. Results: The use of NAC 10 × MIC alone showed a significant antibactericidal effect, promoting a 4-5 log10 CFU/ mL reduction in biofilm cells. The combination of NAC 10 × MIC with vancomycin (independently of the concentration used) reduced significantly the number of biofilm cells for all strains evaluated (5-6 log10). Conclusion: N-acetylcysteine associated to vancomycin can be a potential therapeutic strategy in the treatment of infections associated to biofilms of S. epidermidis or S. aureus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This thesis deals with an investigation of combinatorial and robust optimisation models to solve railway problems. Railway applications represent a challenging area for operations research. In fact, most problems in this context can be modelled as combinatorial optimisation problems, in which the number of feasible solutions is finite. Yet, despite the astonishing success in the field of combinatorial optimisation, the current state of algorithmic research faces severe difficulties with highly-complex and data-intensive applications such as those dealing with optimisation issues in large-scale transportation networks. One of the main issues concerns imperfect information. The idea of Robust Optimisation, as a way to represent and handle mathematically systems with not precisely known data, dates back to 1970s. Unfortunately, none of those techniques proved to be successfully applicable in one of the most complex and largest in scale (transportation) settings: that of railway systems. Railway optimisation deals with planning and scheduling problems over several time horizons. Disturbances are inevitable and severely affect the planning process. Here we focus on two compelling aspects of planning: robust planning and online (real-time) planning.
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.