924 resultados para Spherical parameterization
Resumo:
In this work, we present a supersymmetric extension of the quantum spherical model, both in components and also in the superspace formalisms. We find the solution for short- and long-range interactions through the imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is analyzed and the corresponding critical dimensions are determined.
Resumo:
We analyse the phase diagram of a quantum mean spherical model in terms of the temperature T, a quantum parameter g, and the ratio p = -J(2)/J(1) where J(1) > 0 refers to ferromagnetic interactions between first-neighbour sites along the d directions of a hypercubic lattice, and J(2) < 0 is associated with competing anti ferromagnetic interactions between second neighbours along m <= d directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g = 0 space, with a Lifshitz point at p = 1/4, for d > 2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T = 0 phase diagram, there is a critical border, g(c) = g(c) (p) for d >= 2, with a singularity at the Lifshitz point if d < (m + 4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p = 1/4. 2012 (C) Elsevier B.V. All rights reserved.
Resumo:
The nonequilibrium stationary state of an irreversible spherical model is investigated on hypercubic lattices. The model is defined by Langevin equations similar to the reversible case, but with asymmetric transition rates. In spite of being irreversible, we have succeeded in finding an explicit form for the stationary probability distribution, which turns out to be of the Boltzmann-Gibbs type. This enables one to evaluate the exact form of the entropy production rate at the stationary state, which is non-zero if the dynamical rules of the transition rates are asymmetric.
Resumo:
The strain image contrast of some in vivo breast lesions changes with increasing applied load. This change is attributed to differences in the nonlinear elastic properties of the constituent tissues suggesting some potential to help classify breast diseases by their nonlinear elastic properties. A phantom with inclusions and long-term stability is desired to serve as a test bed for nonlinear elasticity imaging method development, testing, etc. This study reports a phantom designed to investigate nonlinear elastic properties with ultrasound elastographic techniques. The phantom contains four spherical inclusions and was manufactured from a mixture of gelatin, agar and oil. The phantom background and each of the inclusions have distinct Young's modulus and nonlinear mechanical behavior. This phantom was subjected to large deformations (up to 20%) while scanning with ultrasound, and changes in strain image contrast and contrast-to-noise ratio between inclusion and background, as a function of applied deformation, were investigated. The changes in contrast over a large deformation range predicted by the finite element analysis (FEA) were consistent with those experimentally observed. Therefore, the paper reports a procedure for making phantoms with predictable nonlinear behavior, based on independent measurements of the constituent materials, and shows that the resulting strain images (e. g., strain contrast) agree with that predicted with nonlinear FEA.
Resumo:
We present a "boundary version" for theorems about minimality of volume and energy functionals on a spherical domain of an odd-dimensional Euclidean sphere.
Resumo:
Objective To evaluate the intra- and interobserver reliability of assessment of three-dimensional power Doppler (3D-PD) indices from single spherical samples of the placenta. Methods Women with singleton pregnancies at 2440 weeks' gestation were included. Three scans were independently performed by two observers; Observer 1 performed the first and third scan, intercalated by the scan of Observer 2. The observers independently analyzed the 3D-PD datasets that they had previously acquired using four different methods, each using a spherical sample: random sample extending from basal to chorionic plate; random sample with 2 cm3 of volume; directed sample to the region subjectively determined as containing more color Doppler signals extending from basal to chorionic plate; or directed sample with 2 cm3 of volume. The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were evaluated in each case. The observers were blinded to their own and each other's results. Additional evaluation was performed according to placental location: anterior, posterior and fundal or lateral. Intra- and interobserver reliability was assessed by intraclass correlation coefficients (ICC). Results Ninety-five pregnancies were included in the analysis. All three placental 3D-PD indices showed only weak to moderate reliability (ICC < 0.66 and ICC < 0.48, intra- and interobserver, respectively). The highest values of ICC were observed when using directed spherical samples from basal to chorionic plate. When analyzed by placental location, we found lower ICCs for lateral and fundal placentae compared to anterior and posterior ones. Conclusion Intra- and interobserver reliability of assessment of placental 3D-PD indices from single spherical samples in pregnant women greater than 24 weeks' gestation is poor to moderate, and clinical usefulness of these indices is likely to be limited. Copyright (c) 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
In this work, we reported some results about the stochastic quantization of the spherical model. We started by reviewing some basic aspects of this method with emphasis in the connection between the Langevin equation and the supersymmetric quantum mechanics, aiming at the application of the corresponding connection to the spherical model. An intuitive idea is that when applied to the spherical model this gives rise to a supersymmetric version that is identified with one studied in Phys. Rev. E 85, 061109, (2012). Before investigating in detail this aspect, we studied the stochastic quantization of the mean spherical model that is simpler to implement than the one with the strict constraint. We also highlight some points concerning more traditional methods discussed in the literature like canonical and path integral quantization. To produce a supersymmetric version, grounded in the Nicolai map, we investigated the stochastic quantization of the strict spherical model. We showed in fact that the result of this process is an off-shell supersymmetric extension of the quantum spherical model (with the precise supersymmetric constraint structure). That analysis establishes a connection between the classical model and its supersymmetric quantum counterpart. The supersymmetric version in this way constructed is a more natural one and gives further support and motivations to investigate similar connections in other models of the literature.
Resumo:
The influence of the shear stress and angular momentum on the nonlinear spherical collapse model is discussed in the framework of the Einstein–de Sitter and ΛCDM models. By assuming that the vacuum component is not clustering within the homogeneous nonspherical overdensities, we show how the local rotation and shear affect the linear density threshold for collapse of the nonrelativistic component (δc) and its virial overdensity (ΔV ). It is also found that the net effect of shear and rotation in galactic scale is responsible for higher values of the linear overdensity parameter as compared with the standard spherical collapse model (no shear and rotation)
Resumo:
[EN]We present a new strategy, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance...
Resumo:
[EN]We have recently introduced a new strategy, based on the meccano method [1, 2], to construct a T-spline parameterization of 2D and 3D geometries for the application of iso geometric analysis [3, 4]. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between the objects and the parametric domain, i.e. the meccano. The key of the method lies in de_ning an isomorphic transformation between the parametric and physical T-mesh _nding the optimal position of the interior nodes, once the meccano boundary nodes are mapped to the boundary of the physical domain…
Resumo:
[EN]We present a new method, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance…
Resumo:
A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.
Resumo:
In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.