899 resultados para Speed and torque observers
Resumo:
Juvenile chronic arthritis (JCA) is one cause of chronic illness and disability in childhood. Traditional clinical assessment of clients with JCA include objective measures of joint deformity, joint swelling, range of motion, duration of morning stiffness, pain, walking speed, running speed and muscle strength. In many instances, these traditional measures have little or no significance or relevance to paediatric clients and their parents whereas functional skills used in everyday living are more likely to be meaningful. Measures of physical, social, and psychological functioning ensure a comprehensive health assessment. Responsible occupational therapy assessment and management of paediatric clients diagnosed with JCA requires the use of reliable, valid and sensitive measures of function. Several instruments are now available which measure a child's or adolescent's functional abilities. In this paper, JCA and the impact of JCA on functional development are reviewed. As well, seven functional assessment tools designed for use with paediatric clients with JCA which occupational therapists can use in their clinical practice will be appraised. The various characteristics of these tools are discussed in order to assist practitioners and researchers in selecting the functional instrument which best meets their needs.
Resumo:
We examine the potential impact of interconnectivity of value chain partnerships through electronic means (e-business practices) on the management of Public Sector Agriculture R&D in Australia. We review the changing forms of managing research and development, the forces driving these changes, and R&D processes that are theoretically consistent with the move towards value chain involvement and the increase in active constituents in Public Sector Agriculture R&D. We then explore the potential of emerging e-business models to change the patterns of inter-connectivity, speed and omnipresence of partners in the value chain. Three e-business R&D management practices are identified that provide the prerequisite flexibility necessary to take advantage of opportunistic markets. These R&D business practices are: compressing R&D to reduce time to market, fostering co-development to enter a market at the last moment and building flexible products that allow adjustment at the last possible moment. Some fundamental reallocation of existing resources will be required to meet these markets. Implications of these e-business practices for R&D management are discussed.
Resumo:
Increased professionalism in rugby has elicited rapid changes in the fitness profile of elite players. Recent research, focusing on the physiological and anthropometrical characteristics of rugby players, and the demands of competition are reviewed. The paucity of research on contemporary elite rugby players is highlighted, along with the need for standardised testing protocols. Recent data reinforce the pronounced differences in the anthropometric and physical characteristics of the forwards and backs. Forwards are typically heavier, taller, and have a greater proportion of body fat than backs. These characteristics are changing, with forwards developing greater total mass and higher muscularity. The forwards demonstrate superior absolute aerobic and anaerobic power, and Muscular strength. Results favour the backs when body mass is taken into account. The scaling of results to body mass can be problematic and future investigations should present results using power function ratios. Recommended tests for elite players include body mass and skinfolds, vertical jump, speed, and the multi-stage shuttle run. Repeat sprint testing is a possible avenue for more specific evaluation of players. During competition, high-intensity efforts are often followed by periods of incomplete recovery. The total work over the duration of a game is lower in the backs compared with the forwards; forwards spend greater time in physical contact with the opposition while the backs spend more time in free running, allowing them to cover greater distances. The intense efforts undertaken by rugby players place considerable stress on anaerobic energy sources, while the aerobic system provides energy during repeated efforts and for recovery. Training should focus on repeated brief high-intensity efforts with short rest intervals to condition players to the demands of the game. Training for the forwards should emphasise the higher work rates of the game, while extended rest periods can be provided to the backs. Players should not only be prepared for the demands of competition, but also the stress of travel and extreme environmental conditions. The greater professionalism of rugby union has increased scientific research in the sport; however, there is scope for significant refinement of investigations on the physiological demands of the game, and sports-specific testing procedures.
Resumo:
This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to assess the influence of meteorological conditions on the dispersion of particulate matter from an industrial zone into urban and suburban areas. The particulate matter concentration was related to the most important meteorological variables such as wind direction, velocity and frequency. A coal-fired power plant was considered to be the main emission source with two stacks of 225 m height. A middle point between the two stacks was taken as the centre of two concentric circles with 6 and 20 km radius delimiting the sampling area. About 40 sampling collectors were placed within this area. Meteorological data was obtained from a portable meteorological station placed at approximately 1.7 km to SE from the stacks. Additional data was obtained from the electrical company that runs the coal power plant. These data covers the years from 2006 to the present. A detailed statistical analysis was performed to identify the most frequent meteorological conditions concerning mainly wind speed and direction. This analysis revealed that the most frequent wind blows from Northwest and North and the strongest winds blow from Northwest. Particulate matter deposition was obtained in two sampling campaigns carried out in summer and in spring. For the first campaign the monthly average flux deposition was 1.90 g/m2 and for the second campaign this value was 0.79 g/m2. Wind dispersion occurred predominantly from North to South, away from the nearest residential area, located at about 6 km to Northwest from the stacks. Nevertheless, the higher deposition fluxes occurred in the NW/N and NE/E quadrants. This study was conducted considering only the contribution of particulate matter from coal combustion, however, others sources may be present as well, such as road traffic. Additional chemical analyses and microanalysis are needed to identify the source linkage to flux deposition levels.
Resumo:
INTED2010, the 4th International Technology, Education and Development Conference was held in Valencia (Spain), on March 8, 9 and 10, 2010.
Resumo:
Introduction The early diagnosis of mycobacterial infections is a critical step for initiating treatment and curing the patient. Molecular analytical methods have led to considerable improvements in the speed and accuracy of mycobacteria detection. Methods The purpose of this study was to evaluate a multiplex polymerase chain reaction system using mycobacterial strains as an auxiliary tool in the differential diagnosis of tuberculosis and diseases caused by nontuberculous mycobacteria (NTM) Results Forty mycobacterial strains isolated from pulmonary and extrapulmonary origin specimens from 37 patients diagnosed with tuberculosis were processed. Using phenotypic and biochemical characteristics of the 40 mycobacteria isolated in LJ medium, 57.5% (n=23) were characterized as the Mycobacterium tuberculosis complex (MTBC) and 20% (n=8) as nontuberculous mycobacteria (NTM), with 22.5% (n=9) of the results being inconclusive. When the results of the phenotypic and biochemical tests in 30 strains of mycobacteria were compared with the results of the multiplex PCR, there was 100% concordance in the identification of the MTBC and NTM species, respectively. A total of 32.5% (n=13) of the samples in multiplex PCR exhibited a molecular pattern consistent with NTM, thus disagreeing with the final diagnosis from the attending physician. Conclusions Multiplex PCR can be used as a differential method for determining TB infections caused by NTM a valuable tool in reducing the time necessary to make clinical diagnoses and begin treatment. It is also useful for identifying species that were previously not identifiable using conventional biochemical and phenotypic techniques.
Resumo:
Product fundamentals are essential in explaining heterogeneity in the product space. The scope for adapting and transferring capabilities into the production of different goods determines the speed and intensity of the structural transformation process and entails dissimilar development opportunities for nations. Future specialization patterns become then partly determined by the current network of products’ relatedness. Building on previous literature, this paper explicitly compares methodological concepts of product connectivity to conclude in favor of the density measure we propose combined with the Revealed Relatedness Index (RRI) approach presented by Freitas and Salvado (2011). Overall, RRI specifications displayed more consistent behavior when different time horizons are equated.
Resumo:
In this work, a new steel heated pultrusion die was designed, developed and manufactured to produce U200 glass fibre reinforced thermosetting matrix (GRP) profiles. The finite element analysis (FEA) was used to predict and optimise the developed die heating by using cylindrical electrical powered cartridges. To assess the new die performance it was mounted in the 120 kN pultrusion line of the Portuguese company Vidropol SA and used to produce continuously U200 profiles able to meet all requirements specified for the E23 grade accordingly to the European Standard EN 13706: 2002. After setting up the type, orientation and sequence of layers in the U 200 laminate, different types of thermosetting resins were used in its production. Orthophthalic, isophthalic and bisphenolic unsaturated polyester as well as vinylester resins were used to produce glass fibre reinforced U 200 composite profiles. All applied resins were submitted to SPI gel tests in order to select the more appropriated catalyst system and optimise the processing variables to be used in each case, namely, pultrusion pull-speed and die temperature. The best pultrusion operational conditions were selected by varying and monitoring the pull-speed and die temperature and, at the same time, measuring the temperature on the manufactured U 200 profile during processing. Finally, the produced U200 profiles were submitted to visual inspection, calcination and mechanical tests, namely, flexural, tensional and interlaminar shear strength (ILSS) tests, to assess their accomplishment with the EN 13706 requirements.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
PRINCIPLES: Patients with carotid artery stenosis (CAS) are at risk of ipsilateral stroke and chronic compromise of cerebral blood flow. It is under debate whether the hypo-perfusion or embolism in CAS is directly related to cognitive impairment. Alternatively, CAS may be a marker for underlying risk factors, which themselves influence cognition. We aimed to determine cognitive performance level and the emotional state of patients with CAS. We hypo-thesised that patients with high grade stenosis, bilateral stenosis, symptomatic patients and/or those with relevant risk factors would suffer impairment of their cognitive performance and emotional state. METHODS: A total of 68 patients with CAS of ≥70% were included in a prospective exploratory study design. All patients underwent structured assessment of executive functions, language, verbal and visual memory, motor speed, anxiety and depression. RESULTS: Significantly more patients with CAS showed cognitive impairments (executive functions, word production, verbal and visual memory, motor speed) and anxiety than expected in a normative sample. Bilateral and symptomatic stenosis was associated with slower processing speed. Cognitive performance and anxiety level were not influenced by the side and the degree of stenosis or the presence of collaterals. Factors associated with less co-gnitive impairment included higher education level, female gender, ambidexterity and treated hypercholesterolemia. CONCLUSIONS: Cognitive impairment and increased level of anxiety are frequent in patients with carotid stenosis. The lack of a correlation between cognitive functioning and degree of stenosis or the presence of collaterals, challenges the view that CAS per se leads to cognitive impairment.
Resumo:
Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.
Resumo:
Purpose: Recently morphometric measurements of the ascending aorta have been done with ECG-gated MDCT to help the development of future endovascular therapies (TCT) [1]. However, the variability of these measurements remains unknown. It will be interesting to know the impact of CAD (computer aided diagnosis) with automated segmentation of the vessel and automatic measurements of diameter on the management of ascending aorta aneurysms. Methods and Materials: Thirty patients referred for ECG-gated CT thoracic angiography (64-row CT scanner) were evaluated. Measurements of the maximum and minimum ascending aorta diameters were obtained automatically with a commercially available CAD and semi-manually by two observers separately. The CAD algorithms segment the iv-enhanced lumen of the ascending aorta into perpendicular planes along the centreline. The CAD then determines the largest and the smallest diameters. Both observers repeated the automatic measurements and the semimanual measurements during a different session at least one month after the first measurements. The Bland and Altman method was used to study the inter/intraobserver variability. A Wilcoxon signed-rank test was also used to analyse differences between observers. Results: Interobserver variability for semi-manual measurements between the first and second observers was between 1.2 to 1.0 mm for maximal and minimal diameter, respectively. Intraobserver variability of each observer ranged from 0.8 to 1.2 mm, the lowest variability being produced by the more experienced observer. CAD variability could be as low as 0.3 mm, showing that it can perform better than human observers. However, when used in nonoptimal conditions (streak artefacts from contrast in the superior vena cava or weak lumen enhancement), CAD has a variability that can be as high as 0.9 mm, reaching variability of semi-manual measurements. Furthermore, there were significant differences between both observers for maximal and minimal diameter measurements (p<0.001). There was also a significant difference between the first observer and CAD for maximal diameter measurements with the former underestimating the diameter compared to the latter (p<0.001). As for minimal diameters, they were higher when measured by the second observer than when measured by CAD (p<0.001). Neither the difference of mean minimal diameter between the first observer and CAD nor the difference of mean maximal diameter between the second observer and CAD was significant (p=0.20 and 0.06, respectively). Conclusion: CAD algorithms can lessen the variability of diameter measurements in the follow-up of ascending aorta aneurysms. Nevertheless, in non-optimal conditions, it may be necessary to correct manually the measurements. Improvements of the algorithms will help to avoid such a situation.