966 resultados para Spectral and nonlinear optical characterization
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.
Resumo:
This work describes the synthesis, IR and (13)C CPMAS NMR spectroscopic as well the thermal characterization of the new dicarboxylate complexes [Pd(2)(ox)(2)(4,4'-bipy)]n (1), [Pd(2)(ox)(2)(bpe)](n) (2) and [Pd(2)(ox)(2)(pz)](n) (3) {ox = oxalate, bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethane, pz = pyrazine}. TG experiments reveal that compounds 1-3 undergo thermal decomposition in three steps. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.
Resumo:
The synthesis and thermal behavior of the new [Pd(fum)(bipy)] (n) center dot 2nH(2)O (1), [Pd(fum)(bpe)] (n) center dot nH(2)O (2) and [Pd(fum)(pz)] (n) center dot 3nH(2)O (3) {bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethene and pz = pyrazine} fumarate complexes are described in this work as well their characterization by IR and (13)C CPMAS NMR spectroscopies. TG curves showed that the compounds released organic ligands and lattice water molecules in the temperature range of 46-491 A degrees C. In all the cases, metallic palladium was identified as the final residue.
Resumo:
Synthesis, spectroscopic characterization and thermal behavior of pyrazolate-bridged palladium complexes [Pd(mu-Pz)(2)](n) (1), [Pd(mu-mPz)(2)](n) (2), [Pd(mu-dmPz)(2)](n) (3), [Pd(mu-IPz)(2)](n) (4) {pyrazolate (Pz(-)), 4-methylpyrazolate (mPz(-)), 3,5-dimethylpyrazolate (dmPz(-)), 4-iodopyrazolate (IPz(-))} have been described in this work. The exobidentate coordination mode of pyrazolato ligands in 1-4 was inferred on basis of IR spectroscopic evidences. TG investigations indicated that the introduction of substituents at the 4 position in the pyrazolyl moiety into coordination polymers do not affect significantly their thermal stability, whereas at the 3 and 5 position reduced the stability of the main chain. Metal palladium was the final product of the thermal decompositions, which was identified by X-ray powder diffraction.
Resumo:
Cubic phase group III-nitrides were grown using RF plasma assisted Molecular Beam Epitaxy on GaAs (001) substrates. High-resolution X-ray diffraction, photoluminescence, cathodoluminescence and photoreflectance measurements were employed to characterize the structural and optical properties of GaN/AlxGa1-xN Multi Quantum Well (MQW) structures, in which both Aluminum content and well widths were varied. The observed quantized states are in agreement with first-principles based theoretical calculations.
Resumo:
The optical nonlinearity of tungstate fluorophosphate glasses, synthesized in the NaPO3-BaF2-WO3 system, was investigated through experiments based on the third-order susceptibility, chi((3)). Nonlinear (NL) refraction and NL absorption measurements in the picosecond regime were performed using the Z-scan technique at 532 nm. NL refractive index, n(2)proportional toRe chi((3)), ranging from 0.4x10(-14) cm(2)/W to 0.6x10(-14) cm(2)/W were determined. The two-photon absorption coefficient, alpha(2)proportional toIm chi((3)), for excitation at 532 nm, vary from 0.3 to 0.5 cm/GW. Light induced birefringence experiments performed in the femtosecond regime indicate that the response time of the nonlinearity at 800 nm is faster than 100 fs. The experiments show that chi((3)) is enhanced when the WO3 concentration increases and this behavior is attributed to the hyperpolarizabilities associated to W-O bonds. (C) 2004 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of composite resins for restorative procedure in anterior and posterior cavities is highly common in Dentistry due to its mechanical and aesthetic properties that are compatible with the remaining dental structure. Thus, the aim of this study was to evaluate the optical characterization of one dental composite resin using bovine enamel as reinforcing filler. The same organic matrix of the commercially available resins was used for this experimental resin. The reinforcing filler was obtained after the gridding of bovine enamel fragments and a superficial treatment was performed to allow the adhesion of the filler particles with the organic matrix. Different optical images as fluorescence and reflectance were performed to compare the experimental composite with the human teeth. The present experimental resin shows similar optical properties compared with human teeth. © 2012 SPIE.
Resumo:
We have prepared heavy metal oxide glasses containing metallic copper nanoparticles with promising nonlinear optical properties which were determined by Z-scan and pump-probe measurements using femtosecond laser pulses. For the wavelengths within the plasmon band, we have observed saturable absorption and response times of 2.3 ps. For the other regions of the spectrum, reverse saturable absorption and lifetimes shorter than 200 fs were verified. The nonlinear refractive index is about 2.0 × 10-19 m2/W from visible to telecom region, thus presenting an enhancement effect at wavelengths near the plasmon and Cu+2 d-d band. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient beta, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter , whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 +/- 0.05, in good agreement with the tricritical hypothesis for the nematic-isotropic transition.
Resumo:
We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short-and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.
Resumo:
We use Z-scan technique to investigate the nonlinear optical response of the thermotropic liquid crystal E7 in the neighborhood of the nematic-isotropic phase transition. The analysis of the data for the nonlinear optical birefringence is compatible with an effective critical exponent of the order parameter, beta = 0.28 +/- 0.03, which is close to the classical value, beta = 0.25, for a tricritical point. The nonlinear optical absorption in the nematic range depends on the geometrical configuration of the nematic director with respect to the polarization beam, and vanishes in the isotropic phase.
Resumo:
The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen.
Resumo:
The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.