171 resultados para Sparsity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instability analysis of compressible orthogonal swept leading-edge boundary layer flow was performed in the context of BiGlobal linear theory. 1, 2 An algorithm was developed exploiting the sparsity characteristics of the matrix discretizing the PDE-based eigenvalue problem. This allowed use of the MUMPS sparse linear algebra package 3 to obtain a direct solution of the linear systems associated with the Arnoldi iteration. The developed algorithm was then applied to efficiently analyze the effect of compressibility on the stability of the swept leading-edge boundary layer and obtain neutral curves of this flow as a function of the Mach number in the range 0 ≤ Ma ≤ 1. The present numerical results fully confirmed the asymptotic theory results of Theofilis et al. 4 Up to the maximum Mach number value studied, it was found that an increase of this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present contribution discusses the development of a PSE-3D instability analysis algorithm, in which a matrix forming and storing approach is followed. Alternatively to the typically used in stability calculations spectral methods, new stable high-order finitedifference-based numerical schemes for spatial discretization 1 are employed. Attention is paid to the issue of efficiency, which is critical for the success of the overall algorithm. To this end, use is made of a parallelizable sparse matrix linear algebra package which takes advantage of the sparsity offered by the finite-difference scheme and, as expected, is shown to perform substantially more efficiently than when spectral collocation methods are used. The building blocks of the algorithm have been implemented and extensively validated, focusing on classic PSE analysis of instability on the flow-plate boundary layer, temporal and spatial BiGlobal EVP solutions (the latter necessary for the initialization of the PSE-3D), as well as standard PSE in a cylindrical coordinates using the nonparallel Batchelor vortex basic flow model, such that comparisons between PSE and PSE-3D be possible; excellent agreement is shown in all aforementioned comparisons. Finally, the linear PSE-3D instability analysis is applied to a fully three-dimensional flow composed of a counter-rotating pair of nonparallel Batchelor vortices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we will see how the efficiency of the MBS simulations can be improved in two different ways, by considering both an explicit and implicit semi-recursive formulation. The explicit method is based on a double velocity transformation that involves the solution of a redundant but compatible system of equations. The high computational cost of this operation has been drastically reduced by taking into account the sparsity pattern of the system. Regarding this, the goal of this method is the introduction of MA48, a high performance mathematical library provided by Harwell Subroutine Library. The second method proposed in this paper has the particularity that, depending on the case, between 70 and 85% of the computation time is devoted to the evaluation of forces derivatives with respect to the relative position and velocity vectors. Keeping in mind that evaluating these derivatives can be decomposed into concurrent tasks, the main goal of this paper lies on a successful and straightforward parallel implementation that have led to a substantial improvement with a speedup of 3.2 by keeping all the cores busy in a quad-core processor and distributing the workload between them, achieving on this way a huge time reduction by doing an ideal CPU usage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data. RESUMEN. Algoritmo basado en técnicas de regresión dispersa para la extracción de las señales cardiacas en pacientes con fibrilación atrial (AF).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corre- sponding functional connections. We applied beamformer source reconstruction to the resting state MEG record- ings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was ob- tained for each subject, and time series were assigned to each of the regions. The fiber densities between the re- gions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introduc- ing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Podemos definir la sociedad como un sistema complejo que emerge de la cooperación y coordinación de billones de individuos y centenares de países. En este sentido no vivimos en una isla sino que estamos integrados en redes sociales que influyen en nuestro comportamiento. En esta tesis doctoral, presentamos un modelo analítico y una serie de estudios empíricos en los que analizamos distintos procesos sociales dinámicos desde una perspectiva de la teoría de redes complejas. En primer lugar, introducimos un modelo para explorar el impacto que las redes sociales en las que vivimos inmersos tienen en la actividad económica que transcurre sobre ellas, y mas concretamente en hasta qué punto la estructura de estas redes puede limitar la meritocracia de una sociedad. Como concepto contrario a meritocracia, en esta tesis, introducimos el término topocracia. Definimos un sistema como topocrático cuando la influencia o el poder y los ingresos de los individuos vienen principalmente determinados por la posición que ocupan en la red. Nuestro modelo es perfectamente meritocrático para redes completamente conectadas (todos los nodos están enlazados con el resto de nodos). Sin embargo nuestro modelo predice una transición hacia la topocracia a medida que disminuye la densidad de la red, siendo las redes poco densascomo las de la sociedad- topocráticas. En este modelo, los individuos por un lado producen y venden contenidos, pero por otro lado también distribuyen los contenidos producidos por otros individuos mediando entre comprador y vendedor. La producción y distribución de contenidos definen dos medios por los que los individuos reciben ingresos. El primero de ellos es meritocrático, ya que los individuos ingresan de acuerdo a lo que producen. Por el contrario el segundo es topocrático, ya que los individuos son compensados de acuerdo al número de cadenas mas cortas de la red que pasan a través de ellos. En esta tesis resolvemos el modelo computacional y analíticamente. Los resultados indican que un sistema es meritocrático solamente si la conectividad media de los individuos es mayor que una raíz del número de individuos que hay en el sistema. Por tanto, a la luz de nuestros resultados la estructura de la red social puede representar una limitación para la meritocracia de una sociedad. En la segunda parte de esta tesis se presentan una serie de estudios empíricos en los que se analizan datos extraídos de la red social Twitter para caracterizar y modelar el comportamiento humano. En particular, nos centramos en analizar conversaciones políticas, como las que tienen lugar durante campañas electorales. Nuestros resultados indican que la atención colectiva está distribuida de una forma muy heterogénea, con una minoría de cuentas extremadamente influyente. Además, la capacidad de los individuos para diseminar información en Twitter está limitada por la estructura y la posición que ocupan en la red de seguidores. Por tanto, de acuerdo a nuestras observaciones las redes sociales de Internet no posibilitan que la mayoría sea escuchada por la mayoría. De hecho, nuestros resultados implican que Twitter es topocrático, ya que únicamente una minoría de cuentas ubicadas en posiciones privilegiadas en la red de seguidores consiguen que sus mensajes se expandan por toda la red social. En conversaciones políticas, esta minoría de cuentas influyentes se compone principalmente de políticos y medios de comunicación. Los políticos son los mas mencionados ya que la gente les dirige y se refiere a ellos en sus tweets. Mientras que los medios de comunicación son las fuentes desde las que la gente propaga información. En un mundo en el que los datos personales quedan registrados y son cada día mas abundantes y precisos, los resultados del modelo presentado en esta tesis pueden ser usados para fomentar medidas que promuevan la meritocracia. Además, los resultados de los estudios empíricos sobre Twitter que se presentan en la segunda parte de esta tesis son de vital importancia para entender la nueva "sociedad digital" que emerge. En concreto hemos presentado resultados relevantes que caracterizan el comportamiento humano en Internet y que pueden ser usados para crear futuros modelos. Abstract Society can be defined as a complex system that emerges from the cooperation and coordination of billions of individuals and hundreds of countries. Thus, we do not live in social vacuum and the social networks in which we are embedded inevitably shapes our behavior. Here, we present an analytical model and several empirical studies in which we analyze dynamical social systems through a network science perspective. First, we introduce a model to explore how the structure of the social networks underlying society can limit the meritocracy of the economies. Conversely to meritocracy, in this work we introduce the term topocracy. We say that a system is topocratic if the compensation and power available to an individual is determined primarily by her position in a network. Our model is perfectly meritocratic for fully connected networks but becomes topocratic for sparse networks-like the ones in society. In the model, individuals produce and sell content, but also distribute the content produced by others when they belong to the shortest path connecting a buyer and a seller. The production and distribution of content defines two channels of compensation: a meritocratic channel, where individuals are compensated for the content they produce, and a topocratic channel, where individual compensation is based on the number of shortest paths that go through them in the network. We solve the model analytically and show that the distribution of payoffs is meritocratic only if the average degree of the nodes is larger than a root of the total number of nodes. Hence, in the light of our model, the sparsity and structure of networks represents a fundamental constraint to the meritocracy of societies. Next, we present several empirical studies that use data gathered from Twitter to analyze online human behavioral patterns. In particular, we focus on political conversations such as electoral campaigns. We found that the collective attention is highly heterogeneously distributed, as there is a minority of extremely influential accounts. In fact, the ability of individuals to propagate messages or ideas through the platform is constrained by the structure of the follower network underlying the social media and the position they occupy on it. Hence, although people have argued that social media can allow more voices to be heard, our results suggest that Twitter is highly topocratic, as only the minority of well positioned users are widely heard. This minority of influential accounts belong mostly to politicians and traditional media. Politicians tend to be the most mentioned, while media are the sources of information from which people propagate messages. We also propose a methodology to study and measure the emergence of political polarization from social interactions. To this end, we first propose a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we illustrate our methodology by applying it to Twitter data. In a world where personal data is increasingly available, the results of the analytical model introduced in this work can be used to enhance meritocracy and promote policies that help to build more meritocratic societies. Moreover, the results obtained in the latter part, where we have analyzed Twitter, are key to understand the new data-driven society that is emerging. In particular, we have presented relevant information that can be used to benchmark future models for online communication systems or can be used as empirical rules characterizing our online behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las redes Bayesianas constituyen un modelo ampliamente utilizado para la representación de relaciones de dependencia condicional en datos multivariantes. Su aprendizaje a partir de un conjunto de datos o expertos ha sido estudiado profundamente desde su concepción. Sin embargo, en determinados escenarios se demanda la obtención de un modelo común asociado a particiones de datos o conjuntos de expertos. En este caso, se trata el problema de fusión o agregación de modelos. Los trabajos y resultados en agregación de redes Bayesianas son de naturaleza variada, aunque escasos en comparación con aquellos de aprendizaje. En este documento, se proponen dos métodos para la agregación de redes Gaussianas, definidas como aquellas redes Bayesianas que modelan una distribución Gaussiana multivariante. Los métodos presentados son efectivos, precisos y producen redes con menor cantidad de parámetros en comparación con los modelos obtenidos individualmente. Además, constituyen un enfoque novedoso al incorporar nociones exploradas tradicionalmente por separado en el estado del arte. Futuras aplicaciones en entornos escalables hacen dichos métodos especialmente atractivos, dada su simplicidad y la ganancia en compacidad de la representación obtenida.---ABSTRACT---Bayesian networks are a widely used model for the representation of conditional dependence relationships among variables in multivariate data. The task of learning them from a data set or experts has been deeply studied since their conception. However, situations emerge where there is a need of obtaining a consensuated model from several data partitions or a set of experts. This situation is referred to as model fusion or aggregation. Results about Bayesian network aggregation, although rich in variety, have been scarce when compared to the learning task. In this context, two methods are proposed for the aggregation of Gaussian Bayesian networks, that is, Bayesian networks whose underlying modelled distribution is a multivariate Gaussian. Both methods are effective, precise and produce networks with fewer parameters in comparison with the models obtained by individual learning. They constitute a novel approach given that they incorporate notions traditionally explored separately in the state of the art. Future applications in scalable computer environments make such models specially attractive, given their simplicity and the gaining in sparsity of the produced model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of a 29-nucleotide RNA containing the sarcin/ricin loop (SRL) of rat 28 S rRNA has been determined at 2.1 Å resolution. Recognition of the SRL by elongation factors and by the ribotoxins, sarcin and ricin, requires a nearly universal dodecamer sequence that folds into a G-bulged cross-strand A stack and a GAGA tetraloop. The juxtaposition of these two motifs forms a distorted hairpin structure that allows direct recognition of bases in both grooves as well as recognition of nonhelical backbone geometry and two 5′-unstacked purines. Comparisons with other RNA crystal structures establish the cross-strand A stack and the GNRA tetraloop as defined and modular RNA structural elements. The conserved region at the top is connected to the base of the domain by a region presumed to be flexible because of the sparsity of stabilizing contacts. Although the conformation of the SRL RNA previously determined by NMR spectroscopy is similar to the structure determined by x-ray crystallography, significant differences are observed in the “flexible” region and to a lesser extent in the G-bulged cross-strand A stack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on Gaussian random field (GRF) models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. Here we focus on FANOVA decompositions of GRF sample paths, and we notably introduce an associated kernel decomposition into 4 d 4d terms called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of GRF sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of ontologies as representations of knowledge is widespread but their construction, until recently, has been entirely manual. We argue in this paper for the use of text corpora and automated natural language processing methods for the construction of ontologies. We delineate the challenges and present criteria for the selection of appropriate methods. We distinguish three ma jor steps in ontology building: associating terms, constructing hierarchies and labelling relations. A number of methods are presented for these purposes but we conclude that the issue of data-sparsity still is a ma jor challenge. We argue for the use of resources external tot he domain specific corpus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been an increased interest in applying non-parametric methods to real-world problems. Significant research has been devoted to Gaussian processes (GPs) due to their increased flexibility when compared with parametric models. These methods use Bayesian learning, which generally leads to analytically intractable posteriors. This thesis proposes a two-step solution to construct a probabilistic approximation to the posterior. In the first step we adapt the Bayesian online learning to GPs: the final approximation to the posterior is the result of propagating the first and second moments of intermediate posteriors obtained by combining a new example with the previous approximation. The propagation of em functional forms is solved by showing the existence of a parametrisation to posterior moments that uses combinations of the kernel function at the training points, transforming the Bayesian online learning of functions into a parametric formulation. The drawback is the prohibitive quadratic scaling of the number of parameters with the size of the data, making the method inapplicable to large datasets. The second step solves the problem of the exploding parameter size and makes GPs applicable to arbitrarily large datasets. The approximation is based on a measure of distance between two GPs, the KL-divergence between GPs. This second approximation is with a constrained GP in which only a small subset of the whole training dataset is used to represent the GP. This subset is called the em Basis Vector, or BV set and the resulting GP is a sparse approximation to the true posterior. As this sparsity is based on the KL-minimisation, it is probabilistic and independent of the way the posterior approximation from the first step is obtained. We combine the sparse approximation with an extension to the Bayesian online algorithm that allows multiple iterations for each input and thus approximating a batch solution. The resulting sparse learning algorithm is a generic one: for different problems we only change the likelihood. The algorithm is applied to a variety of problems and we examine its performance both on more classical regression and classification tasks and to the data-assimilation and a simple density estimation problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principled statistical application of Gaussian random field models used in geostatistics has historically been limited to data sets of a small size. This limitation is imposed by the requirement to store and invert the covariance matrix of all the samples to obtain a predictive distribution at unsampled locations, or to use likelihood-based covariance estimation. Various ad hoc approaches to solve this problem have been adopted, such as selecting a neighborhood region and/or a small number of observations to use in the kriging process, but these have no sound theoretical basis and it is unclear what information is being lost. In this article, we present a Bayesian method for estimating the posterior mean and covariance structures of a Gaussian random field using a sequential estimation algorithm. By imposing sparsity in a well-defined framework, the algorithm retains a subset of “basis vectors” that best represent the “true” posterior Gaussian random field model in the relative entropy sense. This allows a principled treatment of Gaussian random field models on very large data sets. The method is particularly appropriate when the Gaussian random field model is regarded as a latent variable model, which may be nonlinearly related to the observations. We show the application of the sequential, sparse Bayesian estimation in Gaussian random field models and discuss its merits and drawbacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.