1000 resultados para Sistema de reconhecimento de padrões
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Given the widespread use of computers, the visual pattern recognition task has been automated in order to address the huge amount of available digital images. Many applications use image processing techniques as well as feature extraction and visual pattern recognition algorithms in order to identify people, to make the disease diagnosis process easier, to classify objects, etc. based on digital images. Among the features that can be extracted and analyzed from images is the shape of objects or regions. In some cases, shape is the unique feature that can be extracted with a relatively high accuracy from the image. In this work we present some of most important shape analysis methods and compare their performance when applied on three well-known shape image databases. Finally, we propose the development of a new shape descriptor based on the Hough Transform.
Resumo:
Técnicas de reconhecimento de padrões tem como principal objetivo classificar um conjunto de amostras, sendo o processo de aprendizado a fase de maior consumo de tempo. O problema pode piorar em ferramentas de classificação interativas, o que pode ser inaceitável para grandes bases de dados. Um exemplo de classificador é o baseado em Floresta de Caminhos Ótimos [8] - OPF. Dado que muitos trabalhos tem sido orientados à implementação de algoritmos de reconhecimento de padrões em ambiente General Purpose Graphics Processing Unit - GPGPU, o presente estudo objetivou a implementação da etapa de treinamento do classificador Floresta de Caminhos Ótimos em CUDA, visando aumentar a sua eficiência. A otimização do classificador em CUDA demonstrou uma fase de treinamento mais rápida que a versão original.
Resumo:
Diversas atividades nos dias atuais podem ser beneficiadas pela da análise automatizada de imagens como o reconhecimento biométrico de pessoas, a busca de imagens por conteúdo e o diagnóstico médico. Dentre as principais características que podem ser analisadas em uma imagem a fim de obter informações sobre seu conteúdo encontra-se a forma de objetos e regiões da mesma. Neste trabalho propõe-se um novo descritor de formas denominado HTS (Hough Transform Statistics) o qual se baseia no espaço de Hough para representar e reconhecer objetos em imagens por suas formas. Os resultados obtidos sobre algumas bases de imagens públicas mostram que o HTS, além de apresentar altas taxas de acerto, é muito rápido. Discute-se também uma adaptação na etapa de extração de características do descritor a qual fez com que os resultados melhorassem bastante sem deixar o método muito mais lento.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
This work presents a methodology to the morphology analysis and characterization of nanostructured material images acquired from FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) technique. The metrics were extracted from the image texture (mathematical surface) by the volumetric fractal descriptors, a methodology based on the Bouligand-Minkowski fractal dimension, which considers the properties of the Minkowski dilation of the surface points. An experiment with galvanostatic anodic titanium oxide samples prepared in oxalyc acid solution using different conditions of applied current, oxalyc acid concentration and solution temperature was performed. The results demonstrate that the approach is capable of characterizing complex morphology characteristics such as those present in the anodic titanium oxide.
Resumo:
This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application.
Resumo:
Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.
Resumo:
This research proposes a methodology to improve computed individual prediction values provided by an existing regression model without having to change either its parameters or its architecture. In other words, we are interested in achieving more accurate results by adjusting the calculated regression prediction values, without modifying or rebuilding the original regression model. Our proposition is to adjust the regression prediction values using individual reliability estimates that indicate if a single regression prediction is likely to produce an error considered critical by the user of the regression. The proposed method was tested in three sets of experiments using three different types of data. The first set of experiments worked with synthetically produced data, the second with cross sectional data from the public data source UCI Machine Learning Repository and the third with time series data from ISO-NE (Independent System Operator in New England). The experiments with synthetic data were performed to verify how the method behaves in controlled situations. In this case, the outcomes of the experiments produced superior results with respect to predictions improvement for artificially produced cleaner datasets with progressive worsening with the addition of increased random elements. The experiments with real data extracted from UCI and ISO-NE were done to investigate the applicability of the methodology in the real world. The proposed method was able to improve regression prediction values by about 95% of the experiments with real data.
Resumo:
A percepção de presença (PP), evolução do conceito de telepresença, pode ser definida como ilusão perceptiva de não mediação e/ou a percepção ilusória da realidade. O método mais utilizado para a avaliação da PP faz uso de questionários aplicados aos sujeitos, após sua participação numa experiência. Além de não fornecer informações em tempo real esse método sofre muitas interferências advindas tanto dos sujeitos submetidos ao experimento como dos avaliadores dos questionários. Os métodos que poderiam ser mais efetivos para a avaliação da PP, em tempo real, fazem uso de sinais fisiológicos que variam independentemente da vontade dos sujeitos, como batimento cardíaco, eletrocardiograma, eletroencefalograma, resistividade e umidade da pele. Os sinais fisiológicos, no entanto, só variam de forma significativa em situações de estresse, inviabilizando sua utilização em atividades normais, sem estresse. Outra forma de avaliar a PP é utilizar sistemas de rastreamento do olhar. Estudados e desenvolvidos desde o século 19, os sistemas de rastreamento do olhar fornecem um mapeamento do movimento dos olhos. Além de indicar para onde os sujeitos estão olhando, podem também monitorar a dilatação da pupila e as piscadas. Atualmente existem sistemas de rastreamento do olhar comerciais de baixo custo, que apesar de terem menos precisão e frequência que os equipamentos de alto custo são mais práticos e possuem software de plataforma aberta. No futuro serão tão comuns e simples de usar como são hoje as câmeras em dispositivos móveis e computadores, o que viabilizará a aplicação das técnicas e métodos aqui propostos em larga escala, principalmente para monitorar a atenção e envolvimento de atividades mediadas por vídeo. É apresentada uma ferramenta que faz uso do rastreamento do olhar para avaliar a percepção de presença em atividades mediadas por vídeo (com estímulos sonoros). Dois experimentos foram realizados para validar as hipóteses da pesquisa e a ferramenta. Um terceiro experimento foi executado para verificar a capacidade da ferramenta em avaliar a percepção de presença em atividades não estressantes mediadas por vídeo.
Resumo:
The plant metabolism consists of a complex network of physical and chemical events resulting in photosynthesis, respiration, synthesis and degradation of organic compounds. This is only possible due to the different kinds of responses to many environmental variations that a plant could be subject through evolution, leading also to conquering new surroundings. The glyoxylate cycle is a metabolic pathway found in glyoxysomes plant, which has unique role in the seedling establishment. Considered as a variation of the citric acid cycle, it uses an acetyl coenzyme A molecule, derived from lipids beta-oxidation to synthesize compounds which are used in carbohydrate synthesis. The Malate synthase (MLS) and Isocitrate lyase (ICL) enzyme of this cycle are unique and essential in regulating the biosynthesis of carbohydrates. Because of the absence of decarboxylation steps as rate-limiting steps, detailed studies of molecular phylogeny and evolution of these proteins enables the elucidation of the effects of this route presence in the evolutionary processes involved in their distribution across the genome from different plant species. Therefore, the aim of this study was to establish a relationship between the molecular evolution of the characteristics of enzymes from the glyoxylate cycle (isocitrate lyase and malate synthase) and their molecular phylogeny, among green plants (Viridiplantae). For this, amino acid and nucleotide sequences were used, from online repositories as UniProt and Genbank. Sequences were aligned and then subjected to an analysis of the best-fit substitution models. The phylogeny was rebuilt by distance methods (neighbor-joining) and discrete methods (maximum likelihood, maximum parsimony and Bayesian analysis). The identification of structural patterns in the evolution of the enzymes was made through homology modeling and structure prediction from protein sequences. Based on comparative analyzes of in silico models and from the results of phylogenetic inferences, both enzymes show significant structure conservation and their topologies in agreement with two processes of selection and specialization of the genes. Thus, confirming the relevance of new studies to elucidate the plant metabolism from an evolutionary perspective