993 resultados para Scalar-vector-pseudoscalar potential
Resumo:
Chagas disease is one of the most important yet neglected parasitic diseases in Mexico and is transmitted by Triatominae. Nineteen of the 31 Mexican triatomine species have been consistently found to invade human houses and all have been found to be naturally infected with Trypanosoma cruzi. The present paper aims to produce a state-of-knowledge atlas of Mexican triatomines and analyse their geographic associations with T. cruzi, human demographics and landscape modification. Ecological niche models (ENMs) were constructed for the 19 species with more than 10 records in North America, as well as for T. cruzi. The 2010 Mexican national census and the 2007 National Forestry Inventory were used to analyse overlap patterns with ENMs. Niche breadth was greatest in species from the semiarid Nearctic Region, whereas species richness was associated with topographic heterogeneity in the Neotropical Region, particularly along the Pacific Coast. Three species,Triatoma longipennis, Triatoma mexicana and Triatoma barberi, overlapped with the greatest numbers of human communities, but these communities had the lowest rural/urban population ratios. Triatomine vectors have urbanised in most regions, demonstrating a high tolerance to human-modified habitats and broadened historical ranges, exposing more than 88% of the Mexican population and leaving few areas in Mexico without the potential for T. cruzitransmission.
Resumo:
Background: Adenovirus serotype 5 (Ad5) phase IIb vaccine trial (STEP) was prematurely stopped due to a lack of efficacy and two-fold higher incidence of HIV infection among Ad5 seropositive vaccine recipients. We have recently demonstrated that Ad5 immune complexes (Ad5 ICs)-mediated activation of the dendritic cell (DC)-T cell axis was associated with the enhancement of HIV infection in vitro. Although the direct role of Ad5 neutralizing antibodies (NAbs) in the increase of HIV susceptibility during the STEP trial is still under debate, vector-specific NAbs remain a major hurdle for vector-based gene therapies or vaccine strategies. To surmount this obstacle, vectors based on ''rare'' Ad serotypes including Ad6, Ad26, Ad36 and Ad41 were engineered.Methods: The present study aimed to determine whether Ad ICmediated DC maturation could be circumvented using these Advector candidates.Results: We found that all Ad vectors tested forming ICs with plasma containing serotype-specific NAbs had the capacity to 1) mature human DCs as monitored by the up-regulation of costimulatory molecules and the release of pro-inflammatory cytokines (TNF-a), via the stabilization of Ad capsid at endosomal but not lysosomal pH rendering Ad DNA/TLR9 interactions possible and 2) potentiate Ad-specific CD4 and CD8 T cell responses.Conclusion: In conclusion, despite a conserved DC maturation potential, the low prevalence of serotype-specific NAbs renders rare Ad vectors attractive for vaccine strategies.
Resumo:
Induced pluripotent stem (iPS) cells have generated keen interestdue to their potential use in regenerative medicine. They havebeen obtained from various cell types of both mice and humans byexogenous delivery of different combinations of Oct4, Sox2, Klf4,c-Myc, Nanog, and Lin28. The delivery of these transcription factorshas mostly entailed the use of integrating viral vectors (retrovirusesor lentiviruses), carrying the risk of both insertional mutagenesisand oncogenesis due to misexpression of these exogenousfactors. Therefore, obtaining iPS cells that do not carry integratedtransgene sequences is an important prerequisite for their eventualtherapeutic use. Here we report the generation of iPS cell linesfrom mouse embryonic fibroblasts with no evidence of integrationof the reprogramming vector in their genome, achieved by nucleofectionof a polycistronic construct coexpressing Oct4, Sox2, Klf4,and c-Myc
Resumo:
The metropolitan region of Recife, Brazil is endemic for Dirofilaria immitis and has an environment favorable to the development of Culex quinquefasciatus. The goal of this study was to evaluate the vector competence of the Cx. quinquefasciatus RECIFE population for D. immitis transmission. A total of 2,104 females of Cx. quinquefasciatus RECIFE population were exposed to different densities of D. immitis microfilariae blood meals, ranging from 1,820 to 2,900 mf/ml of blood, in a natural membrane apparatus. The results showed a variation between 92.3% and 98.8% of females fed. The exposure of the Cx. quinquefasciatus RECIFE population to different densities of microfilariae did not influence the mortality of the mosquitoes. Infective larvae from D. immitis were observed in the Malpighian tubules beginning on the 12th day, whereas larvae were observed in the head and proboscis beginning on the 13th day following infection. The vector efficiency index (VEI) presented by the mosquitoes ranged from 7.8 to 56.5. The data demonstrates that the Cx. quinquefasciatus RECIFE population has great potential for the transmission of D. immitis, as it allowed the development of the filarid until the infectious stage at the different densities of microfilariae to which it was exposed.
Resumo:
Phlebotomine sand flies (Diptera, Psychodidae) from Rio de Janeiro State, Brazil: Species distribution and potential vectors of leishmaniases. Rio de Janeiro State, in Brazil, has endemic areas of both cutaneous and visceral leishmaniases. In these areas, entomologic surveillance actions are highly recommended by Brazil's Ministry of Health. The present work describes the results of sand fly captures performed by the Health Department of Rio de Janeiro State between 2009 and 2011 in several municipalities. An updated species list and distribution of phlebotomine sand flies in the state are provided based on an extensive literature review. Currently, the sand fly fauna of Rio de Janeiro State has 65 species, belonging to the genera Brumptomyia (8 spp.) and Lutzomyia (57 spp.). Distribution maps of potential leishmaniases vector species Lutzomyia (Nyssomyia) intermedia, L. migonei, L. (N.) whitmani, L. (N.) flaviscutellata and L. (Lutzomyia) longipalpis are provided and their epidemiological importance is discussed.
Resumo:
Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil. Pierce's disease of grapevines, caused by Xylella fastidiosa, is a serious problem in some regions of North America, not yet reported in Brazil. In this study, a survey of potential sharpshooter (Hemiptera, Cicadellidae, Cicadellinae) and spittlebug (Hemiptera, Cercopidae) vectors of X. fastidiosa was conducted in vineyards at the São Francisco River Valley, a major grape growing region in Brazil. Four vineyards of Vitis vinifera L. were sampled fortnightly from June/2005 to June/2007, using yellow sticky cards, each placed at two different heights (45 cm aboveground and 45 cm above the crop canopy) in 10 sampling localities. A total of 4,095 specimens of sharpshooters were collected, nearly all from 3 Proconiini species, Homalodisca spottii Takiya, Cavichioli & McKamey, 2006 (96.8% of the specimens), Tapajosa fulvopunctata (Signoret, 1854) (3.1%), and Tretogonia cribrata Melichar, 1926 (1 specimen). Hortensia similis (Walker, 1851) (2 specimens) was the only Cicadellini species. Only 1 cercopid specimen, belonging to Aeneolamia colon (Germar, 1821), was trapped. Even though they are not considered potential Xylella vectors, 2 Gyponini leafhoppers were collected: Curtara samera DeLong & Freytag, 1972 (11 specimens) and Curtara inflata DeLong & Freytag, 1976 (1 specimen). Homalodisca spottii was observed feeding and mating on green branches of grapevines, in addition to egg masses. Because of its prevalence on the crop canopy, occurrence throughout the year (with peaks from February to August), and ability to colonize grapevines, H. spottii could be an important vector if a X. fastidiosa strain pathogenic to grapevines becomes introduced at the São Francisco River Valley.
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique-the mapping of apparent diffusion coefficient values-to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained differs according to the technique used. To fully understand how diffusion MR imaging works, it is helpful to be familiar with the physical principles of water diffusion in the brain and the conceptual basis of each imaging technique. Knowledge of the technique-specific requirements with regard to hardware and acquisition time, as well as the advantages, limitations, and potential interpretation pitfalls of each technique, is especially useful.
Resumo:
1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
Resumo:
Non-viral vectors for potential gene replacement and therapy have been developed in order to overcome the drawbacks of viral vectors. The diversity of non-viral vectors allows for a wide range of various products, flexibility of application, ease of use, low-cost of production and enhanced "genomic" safety. Using non-viral strategies, oligonucleotides (ODNs) can be delivered naked (less efficient) or entrapped in cationic lipids, polymers or peptides forming slow release delivery systems, which can be adapted according to the organ targeted and the therapy purposes. Tissue and cell internalization can be further enhanced by changing by physical or chemical means. Moreover, a specific vector can be selected according to disease course and intensity of manifestations fulfilling specific requirements such as the duration of drug release and its level along with cells and tissues specific targeting. From accumulating knowledge and experience, it appears that combination of several non-viral techniques may increase the efficacy and ensure the safety of these evolving and interesting gene therapy strategies.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.
Resumo:
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
In the search for new larvicides from plants, we have investigated the potential activity of the rotenoids deguelin (1), 12a-hydroxy-α-toxicarol (2) and tephrosin (3), isolated from the bioactive ethanol extract of roots of Tephrosia toxicaria Pers., against Aedes aegypti, the main vector of dengue. The absolute configuration of these compounds was determined by circular dichroism (CD) spectra. The LC50 values of the compounds evaluated justify the potential of T. toxicaria as a new natural larvicide.
Resumo:
Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.