982 resultados para Saxon Motor Car Company
Resumo:
Motor vehicle theft costs dearly to the Australian economy. Conservative estimates have put the annual cost of this form of illegal activity at 654 million during 1996. A number of initiatives aimed at reducing the incidence and cost of car theft have been implemented in recent years, yet statistics indicate that car theft is on the increase. Several authors have proposed an integrated approach to the regulation of markets for stolen property. Understanding property crime as a market is central to identifying approaches to its control. This paper discusses an industry model of crime and develops it on Australian data. Our model is an adaptation of one originally proposed by Vandeale (1978). It considers a production sector that uses inputs from a market of illegal labour to generate a supply of illegal goods that are traded in a product market. These sectors interact with each other and with a criminal justice sector. The model is applied to the analysis of car theft in Queensland.
Resumo:
Este artículo presenta los resultados de una investigación realizada al interior de dos contextos. Por un lado, el teórico, en el marco de uno de los discursos más relevantes en los campos de la estrategia organizacional, de la managerial and organizational cognition (MOC) y, en general, de los estudios organizacionales (organization studies): la construcción de sentido (sensemaking). Por el otro, el empírico, en una de las grandes compañías multinacionales del sector automotriz con presencia global. Esta corporación enfrenta una permanente tensión entre lo que dicta la casa matriz, en relación con el cumplimiento de metas y estándares específicos, considerando el mundo entero, y los retos que, teniendo en cuenta lo regional y lo local, experimentan los altos directivos encargados de hacer prosperar la empresa en estos lugares. La aproximación implementada fue cualitativa. Esto en atención a la naturaleza de la problemática abordada y la tradición del campo. Los resultados permiten ampliar el actual nivel de comprensión acerca de los procesos de sensemaking de los altos directivos al enfrentar un entorno estratégico turbulento.
Resumo:
Assessment and prediction of the impact of vehicular traffic emissions on air quality and exposure levels requires knowledge of vehicle emission factors. The aim of this study was quantification of emission factors from an on road, over twelve months measurement program conducted at two sites in Brisbane: 1) freeway type (free flowing traffic at about 100 km/h, fleet dominated by small passenger cars - Tora St); and 2) urban busy road with stop/start traffic mode, fleet comprising a significant fraction of heavy duty vehicles - Ipswich Rd. A physical model linking concentrations measured at the road for specific meteorological conditions with motor vehicle emission factors was applied for data analyses. The focus of the study was on submicrometer particles; however the measurements also included supermicrometer particles, PM2.5, carbon monoxide, sulfur dioxide, oxides of nitrogen. The results of the study are summarised in this paper. In particular, the emission factors for submicrometer particles were 6.08 x 1013 and 5.15 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd respectively and for supermicrometer particles for Tora St, 1.48 x 109 particles per vehicle-1 km-1. Emission factors of diesel vehicles at both sites were about an order of magnitude higher than emissions from gasoline powered vehicles. For submicrometer particles and gasoline vehicles the emission factors were 6.08 x 1013 and 4.34 x 1013 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively, and for diesel vehicles were 5.35 x 1014 and 2.03 x 1014 particles per vehicle-1 km-1 for Tora St and Ipswich Rd, respectively. For supermicrometer particles at Tora St the emission factors were 2.59 x 109 and 1.53 x 1012 particles per vehicle-1 km-1, for gasoline and diesel vehicles, respectively.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating non-critical in-car systems. Likelihood-maximising (LIMA) frameworks optimise speech enhancement algorithms based on recognised state sequences rather than traditional signal-level criteria such as maximising signal-to-noise ratio. Previously presented LIMA frameworks require calibration utterances to generate optimised enhancement parameters which are used for all subsequent utterances. Sub-optimal recognition performance occurs in noise conditions which are significantly different from that present during the calibration session - a serious problem in rapidly changing noise environments. We propose a dialog-based design which allows regular optimisation iterations in order to track the changing noise conditions. Experiments using Mel-filterbank spectral subtraction are performed to determine the optimisation requirements for vehicular environments and show that minimal optimisation assists real-time operation with improved speech recognition accuracy. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session.
Resumo:
An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.