238 resultados para Saltwater encroachment.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100‐year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city’s water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware ‐‐ and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo‐reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back upto 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis was to evaluate historical change of the landscape of Madeira Island and to assess spatial and temporal vegetation dynamics. In current research diverse “retrospective techniques”, such as landscape repeat photography, dendrochronology, and research of historical records were used. These, combined with vegetation relevés, aimed to gather information about landscape change, disturbance history, and vegetation successional patterns. It was found that landscape change, throughout 125 years, was higher in the last five decades manly driven by farming abandonment, building growth and exotic vegetation coverage increase. Pristine vegetation was greatly destroyed since early settlement and by the end of the nineteenth century native vegetation was highly devastated due to recurrent antropogenic disturbances. These actions also helped to block plant succession and to modify floristical assemblages, affecting as well as species richness. In places with less hemeroby, although significant growth of vegetation of lower seral stages was detected, the vegetation of most mature stages headed towards unbalance between recovery and loss, being also very vulnerable to exotic species encroachment. Recovery by native vegetation also occurred in areas formerly occupied by exotic plants and agriculture but it was almost negligible. Vegetation recovery followed the successional model currently proposed, attesting the model itself. Yet, succession was slower than espected, due to lack of favourable conditions and to recurrent disturbances. Probable tempus of each seral stage was obtained by growth rates of woody taxa estimated through dendrochronology. The exotic trees which were the dominant trees in the past (Castanea sativa and Pinus pinaster) almost vanished. Eucalyptus globulus, the current main tree of the exotic forest is being replaced by other cover types as Acacia mearnsii. The latter, along with Arundo donax, Cytisus scoparius and Pittosporum undulatum are currently the exotic species with higher invasive behaviour. However, many other exotic species have also proved to be highly pervasive and came together with the ones referred above to prevent native vegetation regeneration, to diminish biological diversity, and to block early successional phases delaying native forest recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed to study the structure and dynamic of Phytoplankton and Bacterioplankton in a complete cycle of shrimp cultivation (Litopenaeus vannamei) and determine the environmental factors responsible for the structural changes of these communities. The study was realized in a saltwater shrimp farm (Macaíba, RN), between September/2005 and February/2006, and in a freshwater shrimp farm (Ceará Mirim, RN), between May/2007 and September 2007. The samplings were collected weekly in saltwater farm and every fifteen days in freshwater farm. Total phosphorus, chlorophyll a and environmental parameters (pH, dissolved oxygen, salinity, temperature, depth and water transparency) were measured. Qualitative and quantitative analysis of the phytoplankton and bacterioplankton were carried out. The Shannon-Wiener ecologic indexes of diversity and the Pielou equitability indexes were calculated to the phytoplankton. Bacterial density was determined by epifluorescence microscopy. The data were statistically analyzed by Pearson correlation and t-Test. Chlorophycea were predominat in salt water and in the captation/drainage point (24 to 99%). Diatoms had higher wealth. The species Choricystis minor had the highest occurrence (100%) and dominance (90-100%), thus showing its adaptation to the high temperatures, salinity and low water transparency conditions. Filamentous Cyanobacteria like Oscillatoria sp., Pseudoanabaena sp. and Phormidium sp. had constant levels. The negative correlation between chlorophycea and water transparency, and the positive correlation between chlorophyll a and salinity, showed that the phytoplankton was well adapted to the low transparency and to the high salinity. The bacterioplankton was negatively correlated with the total phosphorus and salinity. In freshwater, Cyanobacteria were predominant (>80%), presenting some producers of toxins species like Microcystis sp., Aphanizomenon sp., Cylindrospermopsis raciborskii e Anabaena circinalis. Cyanobacterial density and total phosphorus and chlorophyll a concentrations exceeded the maximum value allowed by legislation. The means of total phosphorus varied from 264 to 627 Wg.L-1 and the means of chlorophyll a oscillated between 22 and 182 Wg.L-1. The phytoplankton species were selected by low availability of the light, high pH, temperature and high availability of total phosphorus. The bacterioplankton showed high densities (5,13 x 107 to 8,50 x107 Bac.mL-1). The studied environments (ponds and rivers) presented a high level of trophic state based on the high concentrations of chlorophyll a and total phosphorus and cyanobacteria dominance. The composition of species in the ponds and rivers was similar, as well as high concentrations of total phosphorus and chlorophyll a, highlighting the pollution caused by the discharges of the farms in natural environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diversity of fish species from South America has been affected by various anthropogenic practices. Some studies have reported the influence that illegal transferring or introduction of exotic species have on the trophic webs of continental lakes. The loss of diversity on fish populations and consequent impacts on fishery are commonly evidenced in these cases. The Brazilian Northeast has ponds for which exotic Amazonian species were transferred as Extremoz Lake. These environments serve as study models for comparison and investigation about the possible impacts of these introductions. We tested the hypothesis that loss of species that this trend can be related with the insertion of the genus Cichla, commonly documented as top predator in its endemic environment. Possible structural causes that interfere in other processes such as migration were also investigated. Thus, the local ecological knowledge of fishermen and a current ecotrophic model were used. We took samples of phytoplankton, zooplankton and fishes during two annual cycles. Concurrently, we made interviews with the fishing community. In fact, there are relations between the loss of fish and the insertion of peacock bass in Extremoz Lake. However, Cichla kelberi was not indicated as primary factor to explain fish species decline. The construction of bridges located in the Rio Doce was main factor for respondents and what explains loss of species. The migration of saltwater fish and / or from the river to Extremoz Lake is hindered by the unsuitability of the crossing-streams that are under these structures. According to the ecotrophic model Hoplias malabaricus was considered key-species and Cichla kelberi top predator. This last trend was similarly noticed in the stomach and local ecological knowledge of fishermen analysis. Overfishing simulations to Cichla kelberi resulted that only raising its captures in 200%, other native species would increase their biomass values only 15 to 30% (in 6 years).The negative effects of the alien species introduction without prior studies and lack of investments in appropriating these constructions to the needs of the fish fauna structures seem to act simultaneously. Both are causing the decline of fish species richness and consequent local artisanal fishery collapse

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical behavior of metallic chromium in aqueous solutions containing chloride ions at different pH was studied by means of open-circuit potential vs. time measurements, cyclic voltammetry and electrochemical impedance spectroscopy. The composition of the surface oxides was analyzed by XPS. For solutions with pH<3 the formation of a passive layer occurs via a dissolution/precipitation process while for pH>3 the mechanism changes. XPS analysis revealed that Cr2O3 basically constitutes the passive layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three types of raw materials including commercial waste from saltwater (SW), freshwater fish (FW) and tilapia fillet residue (FR) were used to produce fish silage by either acid digestion (2% formic acid and 2% sulfuric acid) or anaerobic fermentation (5% of Lactobacillus plantarum and 15% sugar cane molasses). Six test diets were used in digestibility trials prepared with 70% reference diet and 30% of each experimental silage. These diets were fed to juvenile pacu Piaractus mesopotamicus (146 g average weight) in triplicate. Fish were kept in 500-L tanks and feces collected by manual extrusion. It was observed for both processes that SW waste always had the highest moisture content and lowest fat and ash. Highest crude protein levels were found in silages from commercial fish waste (SW and FW) made from whole fish unfit for human consumption. However, apparent digestibility coefficients did not vary among diets (P > 0.05). Although values did not differ statistically, fermented silage consistently displayed higher digestibility coefficients compared to acid silage. The silages exhibited relatively high protein digestibility (72.5-80.0%), thus suggesting the feasibility of using fish industry by-products in aquaculture feeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Zoologia) - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazilian Campos grasslands are ecosystems under high frequency of disturbance by grazing and fires. Absence of such disturbances may lead to shrub encroachment and loss of plant diversity. Vegetation regeneration after disturbance in these grasslands occurs mostly by resprouting from belowground structures. We analyzed the importance of bud bank and belowground bud bearing organs in Campos grasslands. We hypothesize that the longer the intervals between disturbances are, the smaller the size of the bud bank is. Additionally, diversity and frequency of belowground organs should also decrease in areas without disturbance for many years. We sampled 20 soil cores from areas under different types of disturbance: grazed, exclusion from disturbance for two, six, 15 and 30 years. Belowground biomass was sorted for different growth forms and types of bud bearing organs. We found a decrease in bud bank size with longer disturbance intervals. Forbs showed the most drastic decrease in bud bank size in the absence of disturbance, which indicates that they are very sensitive to changes in disturbance regimes. Xylopodia (woody gemmiferous belowground organs with hypocotyl-root origin) were typical for areas under influence of recurrent fires. The diversity of belowground bud bearing structures decreased in the absence of disturbance. Longer intervals between disturbance events, resulting in decrease of bud bank size and heterogeneity of belowground organs may lead to the decline and even disappearance of species that relay on resprouting from the bud bank upon disturbance. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Juniperus virginiana (eastern redcedar) is encroaching into mesic prairies of the southern Great Plains, USA, and is altering the hydrologic cycle. We used the thermal dissipation technique to quantify daily water use of J. virginiana into a mesic prairie by measuring 19 trees of different sizes from different density stands located in north-central Oklahoma during 2011. We took the additional step to calibrate our measurements by comparing thermal dissipation technique estimates to volumetric water use for a subset of trees. Except for days with maximum air temperature below -3 degrees C, J. virginiana trees used water year round, reached a peak in late May, and exhibited reduced water use in summer when soil water availability was low. Overall daily average water use was 24 l (+/- 21.81 s.d.) per tree. Trees in low density stands used more water than trees with similar diameters from denser stands. However, there was no difference in water use between trees in different density stands when expressed on a canopy area basis. Approximately 50% of variation in water use that remained after accounting for the factors site, tree, and day was explained using a physiologically-based model that included daily potential evapotranspiration, maximum vapour pressure deficit, maximum temperature, solar radiation, and soil water storage between 0 and 10 cm. Our model suggested that a J. virginiana woodland with a closed canopy is capable of transpiring almost all precipitation reaching the soil in years with normal precipitation, indicating the potential for encroachment to reduce water yield for streamflow and groundwater recharge. Copyright (C) 2013 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)