981 resultados para STRONTIUM ADDITIONS
Resumo:
The effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% Al alloy was studied using differential thermal analysis (DTA), optical (OM) and scanning electron microscopies (SEM) and X-ray diffractometry. The results indicated that Ag additions to the Cu-10 mass% Al alloy shift the equilibrium concentration to higher Al contents, allow to obtain both beta(1)' and beta' martensitic phases in equilibrium and that Ag precipitation is a process associated with the perlitic phase formation.
Resumo:
In the Cu-Al system, due to the sluggishness of the beta a dagger" (alpha + gamma(1)) eutectoid reaction, the beta phase can be retained metastably. During quenching, metastable beta alloys undergo a martensitic transformation to a beta' phase at Al low content. The ordering reaction beta a dagger" beta(1) precedes the martensitic transformation. The influence of Ag additions on the reactions containing the beta phase in the Cu-11mass%Al alloy was studied using differential scanning calorimetry and in situ X-ray diffractometry. The results indicated that, on cooling, two reactions are occurring in the same temperature range, the beta -> (alpha + gamma(1)) decomposition reaction and the beta -> beta(1) reaction, with different reaction mechanisms (diffusive for the former and ordering for the latter) and, consequently, with different reaction rates. For lower cooling rates, the dominant is the decomposition reaction and for higher cooling rates the ordering reaction prevails. on heating, the (alpha + gamma(1)) -> beta reverse eutectoid reaction occurs with a resulting beta phase saturated with alpha. The increase of Ag concentration retards the beta -> (alpha + gamma(1)) decomposition reaction and the beta -> beta(1) ordering reaction, which occurs in the same temperature range, becomes the predominant process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pearlitic reaction in Cu-10wt%Al alloy with additions of 4, 6, 8, and 10wt%Ag was studied using scanning electron microscopy, energy dispersive X-ray microanalysis, in situ X-ray diffractometry, and microhardness measurements. The results indicated that the presence of Ag changes the pearlitic phase microstructure and its mechanical properties, because of the influence of Ag in the pearlitic phase growth mechanism. (C) 2008 International Centre for Diffraction Data.
Resumo:
The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu-9 mass%Al, Cu-10 mass%Al, and Cu-11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu-Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu-9 mass%Al and Cu-10 mass%Al alloys and decreasing these values for the Cu-11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pristine, W and Mn 1% doped Ba(0.6)Sr(0.4)TiO(3) epitaxial thin films grown on the LaAlO(3) substrate were deposited by pulsed laser deposition (PLD). Dielectric and ferroelectric properties were determined by the capacitance measurements and X-ray diffraction was used to determine both residual elastic strains and defect-related inhomogeneous strains-by analyzing diffraction line shifts and line broadening, respectively. We found that both elastic and inhomogeneous strains are affected by doping. This strain correlates with the change in Curie-Weiss temperature and can qualitatively explain changes in dielectric loss. To explain the experimental findings, we model the dielectric and ferroelectric properties of interest in the framework of the Landau-Ginzburg-Devonshire thermodynamic theory. As expected, an, elastic-strain contribution due to the epilayer-substrate misfit has an important influence on the free-energy. However, additional terms that correspond to the defect-related inhomogeneous strain had to be introduced to fully explain the measurements.
Resumo:
Wet silica gels with similar to 1.4 x 10(-3) mol SiO2/cm(3) and similar to 90 vol.% liquid phase were prepared from the sonohydrolysis of tetraethoxysilane (TEOS) with different additions of dimethylformamide (DMF). Aerogels were obtained by CO2 supercritical extraction. The samples were studied mainly by small-angle X-ray scattering (SAXS) and nitrogen adsorption. Wet gels exhibit a mass fractal structure with fractal dimension D increasing from 2.23 to 2.35 and characteristic length xi decreasing from similar to 9.4 nm to similar to 5.1 nm, as the DMF/TEOS molar ratio is increased from 0 to 4. The supercritical process apparently eliminates some porosity, shortening the fractality domain in the mesopore region and developing an apparent surface/mass fractal (with correlated mass fractal dimension D-m similar to 2.6 and surface fractal dimension D-s similar to 2.3) in the micropore region. The fundamental role of the DMF addition on the structure of the aerogels is to diminish the porosity and the pore mean size, without, however, modify substantially the specific surface area and the average size of the silica particle of the solid network. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The acid and ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures are studied, as a function of the initial additions of ethanol to the mixtures, by means of flux calorimetry measurements. A device was specially designed for this purpose. Under acid conditions, our proposed method has been able to resolve hydrolysis from other condensation reactions, by detecting the exothermal hydrolysis reaction heat. The process has been explained by a dissolution and reaction mechanism. Ultrasound forces the dissolution process to start the reaction. The alcohol produced in the reaction helps the dissolution process to further enhance the hydrolysis. Initial amounts of pure ethanol added to the mixtures shorten the start time of the reaction, due to an additional effect of dissolution, and diminish the reaction rate, as a result of the solvent dilution effect. Our dissolution and reaction mechanism modeling describes the main points arising from the experimental data and yields k(H) = 0.24 M(-1) min(-1) for the second-order hydrolysis rate constant at 39 degrees C.
Resumo:
The influence of silver additions on the Cu-13 wt. pot. Al alloy hardness was studied for additions in the range 0 to 16 wt. pot Ag. The results indicated a pronounced hardness increase with the silver content and an influence of the quenching temperature. Data obtained from scanning electron microscopy indicated that the formation of silver-rich precipitates, wich change with the quenching temperature, seems to produce the changes on alloys hardness.
Resumo:
The influence of additions of 2, 4, 6, 8, 10 and 12 mass% Ag on the thermal behavior of the Cu-8 mass% Al alloy was studied using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicate that the presence of silver introduces new thermal events, due to the formation of a silver-rich phase and, for additions of 10 and 12 mass% Ag, it is possible to verify the formation of the gamma (1) phase (Cu9Al4) and the metastable transitions which are only observed in alloys with a minimum of 9 mass% Al.
Resumo:
Theoretical data using ab initio perturbed ion calculation were compared with ferroelectric and piezoelectric experimental data of strontium doped PZT. Various concentrations of SrO in PZT at constant temperature and sintering time were carried out. Experimental results, such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion dislocation and the lattice interaction energy which show that strontium increment in PZT alter the energies and increase the values of piezoelectric and ferroelectric variables. Calculations of lattice energy of the rhombohedral phase show that a phase non-stability is coincident with increasing experimental values of the P-R, E-C and Kp. (C) 2001 Elsevier B.V. Ltd. All rights reserved.