843 resultados para SCHEDULING OF GRID TASKS
Resumo:
Two experiments are reported that examine the effects of caffeine consumption on attitude change by using different secondary tasks to manipulate message processing. The first experiment employed an orientating task whilst the second experiment employed a distracter task. In both experiments participants consumed an orange-juice drink that either contained caffeine (3.5?mg/kg body weight) or did not contain caffeine (placebo) prior to reading a counter-attitudinal communication. The results across both experiments were similar. When message processing was reduced or under high distraction, there was no attitude change irrespective of caffeine consumption. However, when message processing was enhanced or under low distraction, there was greater attitude change in the caffeine vs. placebo conditions. Furthermore, attitudes formed after caffeine consumption resisted counter-persuasion (Experiment 1) and led to indirect attitude change (Experiment 2). The extent that participants engaged in message-congruent thinking mediated the amount of attitude change. These results provide evidence that moderate amounts of caffeine increase systematic processing of the arguments in the message resulting in greater agreement.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Composite Web Services (CWS) aggregate multiple Web Services in one logical unit to accomplish a complex task (e.g. business process). This aggregation is achieved by defining a workflow that orchestrates the underlying Web Services in a manner consistent with the desired functionality. Since CWS can aggregate atomic and other CWS they foster the development of service layers and reuse of already existing functionality. An important issue in the deployment of services is their run-time performance under various loads. Due to the complex interactions of the underlying services, a CWS they can exhibit problematic and often difficult to predict behaviours in overload situations. This paper focuses on the use of request scheduling for improving CWS performance in overload situations. Different scheduling policies are investigated in regards to their effectiveness in helping with bulk arrivals.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.
Resumo:
Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.
Resumo:
Large scale wind power generation complicated with restrictions on the tie line plans may lead to significant wind power curtailment and deep cycling of coal units during the valley load periods. This study proposes a dispatch strategy for interconnected wind-coal intensive power systems (WCISs). Wind power curtailment and cycling of coal units are included in the economic dispatch analysis of regional systems. Based on the day-ahead dispatch results, a tie line power plan adjustment strategy is implemented in the event of wind power curtailment or deep cycling occurring in the economic dispatch model, with the objective of reducing such effects. The dispatch strategy is designed based on the distinctive operation characteristics of interconnected WCISs, and dispatch results for regional systems in China show that the proposed strategy is feasible and can improve the overall system operation performance.
Resumo:
An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.
Resumo:
Background: People with relapsing remitting MS (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls; (2) dual-task decrements are associated with everyday dual-tasking difficulties. In addition, the impact of mood, fatigue and disease severity on dual-tasking were also examined. Methods: 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of centre of pressure on a Biosway, on stable and unstable surfaces) tasks under single and dual-task conditions. Everyday dual-tasking was measured using the DTQ. Mood was measured by the HADS. Fatigue was measured via the MFIS. Results: No differences in age, gender, years of education, estimated pre-morbid IQ or baseline digit span between the groups. Compared to healthy controls, PwRRMS showed a significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=0.007), but not a stable surface (p=0.679). PwRRMS reported higher levels of everyday dual-tasking difficulties (p<0.001). Balance decrement scores were not correlated with everyday dual-tasking difficulties, or with fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527, p=0.001) and depression (rho=0.451, p=0.007). Conclusion: RRMS causes difficulties with dual-tasking, impacting balance, particularly under challenging conditions, which may contribute to an increased risk of gait difficulties and falls. The striking relationship between anxiety/depression and dual-task decrement suggests that worry may be contributing to dual-task difficulties.
Resumo:
Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of task scheduling is to minimize the makespan of applications, exploiting the best possible way to use shared resources. Applications have requirements which call for customized environments for their execution. One way to provide such environments is to use virtualization on demand. This paper presents two schedulers based on integer linear programming which schedule virtual machines (VMs) in grid resources and tasks on these VMs. The schedulers differ from previous work by the joint scheduling of tasks and VMs and by considering the impact of the available bandwidth on the quality of the schedule. Experiments show the efficacy of the schedulers in scenarios with different network configurations.
Resumo:
Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.