239 resultados para Rotors (windings)
Resumo:
In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
Resumo:
This work presents a model of bearingless induction machine with divided winding. The main goal is to obtain a machine model to use a simpler control system as used in conventional induction machine and to know its behavior. The same strategies used in conventional machines were used to reach the bearingless induction machine model, which has made possible an easier treatment of the involved parameters. The studied machine is adapted from the conventional induction machine, the stator windings were divided and all terminals had been available. This method does not need an auxiliary stator winding for the radial position control which results in a more compact machine. Another issue about this machine is the variation of inductances array also present in result of the rotor displacement. The changeable air-gap produces variation in magnetic flux and in inductances consequently. The conventional machine model can be used for the bearingless machine when the rotor is centered, but in rotor displacement condition this model is not applicable. The bearingless machine has two sets of motor-bearing, both sets with four poles. It was constructed in horizontal position and this increases difficulty in implementation. The used rotor has peculiar characteristics; it is projected according to the stator to yield the greatest torque and force possible. It is important to observe that the current unbalance generated by the position control does not modify the machine characteristics, this only occurs due the radial rotor displacement. The obtained results validate the work; the data reached by a supervisory system corresponds the foreseen results of simulation which verify the model veracity
Resumo:
This dissertation dea1s with the active magnetic suspension controI system of an induction bearingIess motor configured with split windings. It analyses a dynamic modeI for the radial magnetic forces actuating on the rotor. From that, it proposes a new approach for the composition of the currents imposed to the machine's stator. It shows the tests accomplished with a prototype, proving the usefulness of the new actuating structure for the radial positioning controI. Finnaly, it points out the importance of adapting this structure to well-known rotational controI techniques, continuing this kind of equipment research, which is carried out at Federal University of Rio Grande do Norte since 2000
Resumo:
This work proposes a methodology to generalize the Y-connections for 12- and 18-pulse autotransformers. A single mathematical expression, obtained through simple trigonometric operations, represents all the connections. The proposed methodology allows choosing any ratio between the input and the output voltages. The converters can operate either as step-up or as step-down voltage. To simplify the design of the windings, graphics are generated to calculate the turn-ratio and the polarity of each secondary winding, with respect to the primary winding. A design example, followed by digital simulations, illustrates the presented steps. Experimental results of two prototypes (12 and 18 pulses) are presented. The results also show that high power factor is an inherent characteristic of multi-pulse converters, without any active or passive power factor pre-regulators needs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work proposes a methodology to generalize the A-connections for 12 and 18-pulse autotransformers. A single mathematical expression, obtained through simple trigonometric operations, represents all the connections. The proposed methodology allows choosing any ratio between the input and the output voltages. The converters can operate either as step-up or as step-down voltage. To simplify the design of the windings, graphics are generated to calculate the turn-ratio and the polarity of each secondary winding, with respect to the primary winding. A design example, followed by digital simulations, and experimental results illustrate the presented steps. The results also show that high power factor is an inherent characteristic of multi-pulse converters, without any active or passive power factor pre-regulators needs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work aims to present the design and the evaluation of a standard multi-pole machine with permanent magnets inserted in the rotor by two different geometrical forms: aligned and skewed magnets. The design (new analytical method) was based on a standard 250 W three phase 12-pole induction motor (squirrel cage rotor type), beginning with the original stator constructive data to calculate the magnetic flux density to determine the permanent magnets. In the development of the work, a simple and modular rotor was built reusing the original 12-pole stator (concentrated windings). The machine was evaluated in a laboratory for the purpose of checking the quantity and quality of energy produced with the machine operating as a generator and its start, torque, and performance working as a motor. In conclusion, the modular skewed magnet is an option for electrical machines, for the generation of a reasonable quality, in the context of decentralized generation and a motor with high torque and low energetic consumption.
Resumo:
This paper investigates both theoretically and experimentally the effect of the location and number of sensors and magnetic bearing actuators on both global and local vibration reduction along a rotor using a feedforward control scheme. Theoretical approaches developed for the active control of beams have been shown to be useful as simplified models for the rotor scenario. This paper also introduces the time-domain LMS feedforward control strategy, used widely in the active control of sound and vibration, as an alternative control methodology to the frequency-domain feedforward approaches commonly presented in the literature. Results are presented showing that for any case where the same number of actuators and error sensors are used there can be frequencies at which large increases in vibration away from the error sensors can occur. It is also shown that using a larger number of error sensors than actuators results in better global reduction of vibration but decreased local reduction. Overall, the study demonstrated that an analysis of actuator and sensor locations when feedforward control schemes are used is necessary to ensure that harmful increased vibrations do not occur at frequencies away from rotor-bearing natural frequencies or at points along the rotor not monitored by error sensors.
Resumo:
The shape modes of a damped-free beam model with a tip rotor are determined by using a dynamical basis that is generated by a fundamental spatial free response. This is a non-classical distributed model for the displacements in the transverse directions of the beam which turns out to be coupled through boundary conditions due to rotation. Numerical calculations are performed by using the Ritz-Rayleigh method with several approximating basis.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.
Resumo:
This work presents a study regarding the optimization of multipulse converters. A general expression for the connection (Δ or Y) for both 12 and 18-pulses is obtained and describes the output voltages on the secondary windings, depending on the voltage reference from the primary. These generalized expressions allows choosing different ratios between input and output voltages and as result an optimum operation point for the converter can be calculated. Considering Δ-connected converters the optimum point occurs when the magnetic core of the autotransformer processes 18% and 17% of the output power for 12 and 18-pulses, respectively. For Y-connected converters the optimum point occurs when the kVA rating is 13% and 18% for 12 and 18-pulses, respectively. Based on these results magnetic elements can be calculated and designed leading to a great weight and volume reduction and also to lower costs and losses. Finally an analysis is made to improve the kVA rating of the transformers for 12 and 18 pulses converters. © 2009 IEEE.
Resumo:
Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.