829 resultados para Roseau commun
Resumo:
Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to beta(2) subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Integrins alpha(M)beta(2) plays important role on leukocytes, such as adhesion, migration, phagocytosis, and apoptosis. It was hypothesized that homomeric associations of integrin subunits provide a driving force for integrins activation, and simultaneously inducing the formation of integrins clusters. However, experimental reports on homomeric associations between integrin subunits are still controversial. Here, we proved the homomeric associations of the isolated Mac-1 subunits in living cells using three-channel fluorescence resonance energy transfer (FRET) microscopy and FRET spectra methods. We found that the extent of homomeric associations between beta(2) subunits is higher than alpha(M) subunits. Furthermore, FRET imaging indicated that the extent of homomeric associations of the Mac-1 subunits is higher along the plasma membrane than in the cytoplasm. Finally, we suggested that homomeric associations of the transmernbrane domains or/and cytoplasmic domains may provide the driving force for the formation of constitutive homomeric associations between alpha(M) or beta(2) subunits. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A simple three-axis model has been developed, which has been successfully applied to the analysis of the light transmittance in spatial incident angle and the simulation of modified formula of Malus' law for Glan-Taylor prisms. Our results indicate that the fluctuations on the cosine squared curve are due to specific misalignments between the axis of the optical system, the optical axis of the prism and the mechanical axis (rotation axis) of prism, which results in the fact that different initial relative location of the to-be-measured-prism in the testing system corresponds to different shape of Malus' law curve. Methods to get absolutely smooth curve are proposed. This analysis is available for other kinds of Glan-type prisms. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Optical parametric chirped-pulse amplification (OPCPA) supplies broadband gain for ultrashort pulses. A new theoretic explanation of OPCPA has been obtained by introducing the concept of tilted pulse front in this paper, and the distribution of broadband amplification has been twice expanded by introducing the technology of achromatic phase matching (APM). The prospect of APM in OPCPA has been discussed in detail. Finally, a design for the amplification of chirped pulses at 1600 nm has been firstly proposed and numerically simulated. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The properties of noncollinear optical parametric amplification based on quasi-phase matching of periodically poled KTP are investigated theoretically. Our numerical simulation focuses on the gain spectrum of dependence upon noncollinear angle, crystal temperature and crystal angle. At the optimal noncollinear angle and grating period with fixed temperature, there exists a broadest gain bandwidth about 130 nm at signal wavelength of 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Damage threshold of crystals SiO2 and YAG against 60-900 fs, 800 nm laser pulses are reported. The breakdown mechanisms were discussed based on the double-flux model and Keldysh theory. We found that impact ionization plays the important role in the femtosecond laser-induced damage in crystalline SiO2, while the roles of photoionization and impact ionization in YAG crystals depend on the laser pulse durations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear X-wave formation at different pulse powers in water is simulated using the standard model of nonlinear Schrodinger equation (NLSE). It is shown that in near field X-shape originally emerges from the interplay between radial diffraction and optical Kerr effect. At relatively low power group-velocity dispersion (GVD) arrests the collapse and leads to pulse splitting on axis. With high enough power, multi-photon ionization (NIPI) and multi-photon absorption (MPA) play great importance in arresting the collapse. The tailing part of pulse is first defocused by MPI and then refocuses. Pulse splitting on axis is a manifestation of this process. Double X-wave forms when the split sub-pulses are self-focusing. In the far field, the character of the central X structure of conical emission (CE) is directly related to the single or double X-shape in the near field. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
20 at.% Yb:YAG single crystals have been grown by the CZ method and gamma-ray irradiation induced color centers and valence change of Fe3+ and Yb3+ ions in Yb:YAG have been studied. One significant 255 nm absorption band was observed in as-grown crystals and was attributed to Fe3+ ions. Two additional absorption (AA) bands located at 255 nm and 345 nm, respectively, were produced after gamma irradiation. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe3+, Fe2+, oxygen vacancies and F-type color centers. Analysis shows that the broad AA band is associated with Fe2+ ions and F-type color centers. The transition Yb3+ Yb2+ takes place as an effect of recharging of one of the Yb3+ ions from a pair in the process of gamma irradiation. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We present a simple route for ZnSe nanowire growth in the ablation crater on a ZnSe crystal surface. The crystal wafer, which was horizontally dipped in pure water, was irradiated by femtosecond laser pulses. No furnace, vacuum chamber or any metal catalyst were used in this experiment. The size of the nanowires is about 1-3 mu m long and 50-150 nm in diameter. The growth rate is 1-3 mu m/s, which is much higher than that achieved with molecular-beam epitaxy and chemical vapor deposition methods. Our discovery reveals a rapid and simple way to grow nanowires on designed micro-patterns, which may have potential applications in microscopic optoelectronics. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The origin of the transverse relaxation time in optically excited semiconductor quantum wells is investigated based on the vector property of the interband transition matrix elements. The dephasing rate due to carrier-carrier (CC) scattering is found to be equal to half of the common momentum relaxation rate. The analytical expression of the polarization dephasing due to CC scattering in two-dimension is established and the dependence of the dephasing rate Gamma(cc) on the carrier density N is determined to be Gamma(cc) = constant (.) N-1/2, which is used to explain the experimental results and provides a promising physical picture. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
Resumo:
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.