932 resultados para Root system efficiency
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Mestrado em Contabilidade e Análise Financeira
Resumo:
Energy efficiency plays an important role to the CO2 emissions reduction, combating climate change and improving the competitiveness of the economy. The problem presented here is related to the use of stand-alone diesel gen-sets and its high specific fuel consumptions when operates at low loads. The variable speed gen-set concept is explained as an energy-saving solution to improve this system efficiency. This paper details how an optimum fuel consumption trajectory based on experimentally Diesel engine power map is obtained.
Resumo:
Dissertation presented to obtain the degree of Doctorate in Biochemistry by Instituto de Tecnologia Química e Biológica of Universidade Nova de Lisboa
Resumo:
Em Portugal o sistema de saúde assume uma importante função no desenvolvimento económico e social, na medida em que os serviços prestados pelo mesmo influenciam não só o bem-estar social como também a produtividade. O processo de contratualização alia-se ao setor público da saúde através do contrato-programa, o qual pretende estabelecer uma estratégia a seguir. O presente trabalho pretende verificar se o setor público da saúde respeita os princípios de economia, eficiência e eficácia, de um modo geral, pretende-se perceber se os contratos-programa são cumpridos na sua totalidade. Para tal procedeu-se à recolha da informação descrita nos relatórios de gestão dos quinze Hospitais que pertencem à Administração Regional de Saúde do Norte. A incerteza relacionada com os contratos-programa, a não existência de um modelo linear para a divulgação pública dos resultados no âmbito do contrato-programa, e ainda o facto de a totalidade das entidades não ser obrigada a emitir essa publicação, conduz à possibilidade de que não estejam a ser cumpridos os princípios da economia, eficácia e eficiência.
Resumo:
The present paper relates a few experiments carried out to study the distribution of radiozinc in tomato seedlings as well its translocation in adult plants. 1 Tomato seedlings grown in nutrient solution were given during two weeks ca. 0.2 microcuries of Zn65C112; the seedlings were then harvested, and after careful washing of the roots with distiled water and diluted HC1, a radioautograph was taken (Fig. 1); this shows that the whole seedling, including the first cotyledon leaves are active; the Zn65 is preferentially concentrated, however, in the root system; this fact suggests that finding by ROSSITER (1953) that the roots of plants growing under natural conditions had a very high concentration of zinc is not due to soil contamination being ascribable to the physiology of such micronutrient. 2. The translocation of radiozinc was demonstrated by three different ways. In the first case, Zn65Cl2 was supplied to the nutrient solution during four weeks; three weeks after the addition of the radiozinc was discontinued, the newer leaves were detached and a radioautograph was taken (Fig. 2); the activity therein found shows that translocation occurred from the old leaves to the young ones. In the next experiment, identical procedure was followed but, instead of a radioautograph, different parts of the plant were ashed and counted; it was verified that 66.6 per cent of the activity supplied was absorbed; due to a great fixation within the roots only 5,6 per cent was translocated to the newer organs. In the third trial, Zn65C12 was directly applied to both upper and lower surfaces of medium aged leaves; counting the separated organs revealed that: 24.2 per cent of the activity applied hab been absorbed; however, 13.7 per cent translocated to the rest of the plant including to the roots. The author wishes to express his gratitude to Dr. P. R. Stout, Chairman, Dept. of Plant Nutrition, University of California, Berkeley and to Mr. A. B. Carlton for their help during part of this work. O autor agradece ao Laboratório de Isótopos da Universidade de São Paulo, na pessoa do Dr. T. Eston, o fornecimento do Zn65 usado neste trabalho.
Resumo:
Tomato roots heavily disfigured by root-knot nematodes were throughly mixed with soil. At various time intervals, samples were taken from the mixture and treated in closed containers by each of the folio wing nematicides: D.D., E.D.B. and M.B. The efficacy of the treatment was tested by setting indicator plants in the treated soil and by examining their roots for the presence of galls two months later. In other words, the ability of the three nematicides to penetrate nematode galls after various periods of rotting, which varied from 5 to 30 days was studied. The main conclusions drawn are as follows: a) no nematicide among the three listed above showed the ability for complete destruction of the nematodes protected inside the roots, for a number of small galls developed on the root system of the indicator plant in all treatments; b) smaller and less numerous galls were present on the roots of the indicator plants grown in soil treated after a rotting period of 30 days; c) however, the control obtained seems to be quite satisfactory economically, since the check plants grew poorly and have developed a very unhealthy root system. This is in accordance with STARK & LEAR (1947), LEAR (1951) and CICCARONE's (1951) statements. The results of the present experiments show again that awaiting for the rotting of galls of the root-knot nematodes is not indispensable for an economically convenient soil fumigation. Fields in which many fleshy infected roots from previous crops have been buried can be economically fumigated immediately, without any loss of time. Notwithstanding, when thick woody roots are present in the soil, the above statements may not hold true. This should constitute a new problem calling for further experiments. Another essay dealing with methyl bromide alone, consisted in treating cotton roots heavily disfigured by Meloidogyne incognita in a container (diameter = 28cm, height = 32 cm), which remained closed for five days. After the treatment, the roots were mixed with soil, in which tomato seedlings were planted. After a growing period of two months, the roots of the tomato plants were washed in running water and examined for the presence of galls. As an early infeccion was present in the root system of all plants, the inefficacy of the treatment has been proved.
Resumo:
In order to study the effects of shading and unshading combined with N fertilizing on tomato transplanting plants, an experiment in greenhouse conditions was carried on. It was concluded that N is important to produce healthy and strong plants. Under shading plus N fertilization, plants are taller and have high nitrate contents, while under unshading plus N fertilization, plants have higher diameter and more developed root system.
Resumo:
ABSTRACTIn contrast to animals, plants cannot move from their place of birth and, therefore, need to adapt to their particular habitat in order to survive. Thus, plant development is remarkably plastic, making plants an ideal system for the isolation of genes that account for intraspecific natural variation and possibly environmental adaptation. However, to date, this approach mostly identified null alleles and missed mutations with subtle effects. For instance, BREVIS RADIX (BRX) has been isolated as a key regulator of root growth through a naturally occurring loss-of-function allele in the Arabidopsis thaliana accession Uk-1 and is the founding member of a highly-conserved plant-specific gene family.In this work, we show that a strong selective pressure is acting on the BRX gene family and dates back before the monocot-dicot divergence. However, functional diversification is observed mainly in dicotyledon BRX family genes and is correlated with acceleration in the evolutionary rates in the N-terminal regions. Population genetic data revealed that BRX is highly conserved across Arabidopsis accessions and presents signatures of adaptation. Interestingly, a seven amino acid deletion polymorphism in BRX sequence was found in a few accessions, which seems to be responsible for their enhanced primary root growth. Nevertheless, BRX might not only be active in the root, as suggested by its expression in the shoot. Indeed, leaves and cotyledons of brx mutants are significantly smaller than wild- type. This phenotype is a direct consequence of the absence of BRX function in the shoot rather than an indirect effect of an altered root system growth. Interestingly, cotyledons of brx plants reflect the same physiological defects as the root. Moreover, phenotypes in BRX gain-of-function plants, such as epinastic leaves and increased epidermal cell size, could be associated with an increase in leaf brassinosteroid content.Collectively, these results indicate that BRX contributes to local adaptation by ubiquitously regulating plant growth, probably through the modulation of brassinosteroid biosynthesis.RÉSUMÉContrairement à la plupart des animaux, les plantes ne peuvent se mouvoir et doivent ainsi s'adapter à leur environnement pour survivre. Pour cette raison, elles représentent un système idéal pour l'identification de gènes contribuant à la variation naturelle intra- spécifique, ainsi qu'à l'adaptation. Cependant, cette approche a, jusqu'à présent, surtout permis d'isoler des allèles nuls et non des mutations conférant des effets plus subtiles. C'est le cas du gène Β REVIS RADIX (BRX), un régulateur clé de la croissance racinaire, qui a été identifié grâce à un allèle non-fonctionnel présent dans l'accession naturelle d'Arabidopsis thaliana Uk-1. BRX et ses homologues des plantes mono- et dicotylédones forment une famille très conservée et spécifique aux plantes.Dans ce travail, nous démontrons que la famille de gènes BRX est soumise à une forte pression de sélection qui remonte avant la divergence entre mono- et dicotylédones. Cependant, une diversification fonctionnelle a été observée chez les gènes des dicotylédones et corrèle avec une accélération de la vitesse d'évolution dans leur région N- terminale. Une analyse génétique de différentes accessions naturelles d'Arabidopsis a révélé que BRX est hautement conservé et présente des signatures d'adaptation. Remarquablement, un polymorphisme de délétion de sept acides aminés a été détecté dans quelques accessions et a pour conséquence une plus forte croissance de la racine primaire. Néanmoins, il semble que le rôle de BRX ne se limite pas qu'à la racine, comme indiqué par son expression dans les parties aériennes de la plante. En effet, les mutants brx présentent des cotylédons et des feuilles significativement plus petits que le type sauvage, une conséquence directe de l'absence d'activité de BRX dans ces organes. Nous avons aussi noté que les cotylédons des mutants brx, à l'instar des racines, ont une perception altérée de l'auxine et peuvent être complémentés par l'application exogène de brassinostéroïdes. De plus, dans des plantes présentant un gain de fonction BRX, les feuilles sont épinastiques et les cellules de leur épiderme plus grandes. Ces phénotypes sont accompagnés d'une augmentation de la concentration de brassinostéroïdes dans les feuilles. Conjointement, ces résultats démontrent que BRX contribue à une adaptation locale de la plante par la régulation générale de sa croissance, probablement en modulant la biosynthèse des brassinostéroïdes.
Resumo:
Microorganisms interact with plants because plants offer a wide diversity of habitats including the phyllosphere (aerial plant part), the rhizosphere (zone of influence of the root system), and the endosphere (internal transport system). Interactions of epiphytes, rhizophytes or endophytes may be detrimental or beneficial for either the microorganism or the plant and may be classified as neutralism, commensalism, synergism, mutualism, amensalism, competition or parasitism
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
Understanding the magnitude of B mobility in eucalyptus may help to select clones that are more efficient for B use and to design new practices of B fertilization. This study consisted of five experiments with three eucalyptus clones (129, 57 and 58) where the response to and mobility of B were evaluated. Results indicated that clone 129 was less sensitive to B deficiency than clones 68 and 57, apparently due to its ability to translocate B previously absorbed via root systems to younger tissues when B in solution became limiting. Translocation also occurred when B was applied as boric acid only once to a single mature leaf, resulting in higher B concentration in roots, stems and younger leaves. The growth of B-deficient plants was also recovere by a single foliar application of B to a mature leaf. This mobility was greater, when foliar-applied B was supplied in complexed (boric acid + manitol) than in non-complexed form (boric acid alone). When the root system of clone 129 was split in two solution compartments, B supplied to one root compartment was translocated to the shoot and back to the roots in the other compartment, improving the B status and growth. Thus, it appears that B is relatively mobile in eucalyptus, especially in clone 129, and its higher mobility could be due to the presence of an organic compound such as manitol, able to complex B.
Resumo:
Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.
Resumo:
Arsenic has been considered the most poisonous inorganic soil pollutant to living creatures. For this reason, the interest in phytoremediation species has been increasing in the last years. Particularly for the State of Minas Gerais, where areas of former mining activities are prone to the occurrence of acid drainage, the demand is great for suitable species to be used in the revegetation and "cleaning" of As-polluted areas. This study was carried out to evaluate the potential of seedlings of Eucalyptus grandis (Hill) Maiden and E. cloeziana F. Muell, for phytoremediation of As-polluted soils. Soil samples were incubated for a period of 15 days with different As (Na2HAsO4) doses (0, 50, 100, 200, and 400 mg dm-3). After 30 days of exposure the basal leaves of E. cloeziana plants exhibited purple spots with interveinal chlorosis, followed by necrosis and death of the apical bud at the 400 mg dm-3 dose. Increasing As doses in the soil reduced root and shoot dry matter, plant height and diameter in both species, although the reduction was more pronounced in E. cloeziana plants. In both species, As concentrations were highest in the root system; the highest root concentration was found in E. cloeziana plants (305.7 mg kg-1) resulting from a dose of 400 mg dm-3. The highest As accumulation was observed in E. grandis plants, which was confirmed as a species with potential for As phytoextraction, tending to accumulate As in the root system and stem.