967 resultados para Robust methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis proposes an integrated holistic approach to the study of neuromuscular fatigue in order to encompass all the causes and all the consequences underlying the phenomenon. Starting from the metabolic processes occurring at the cellular level, the reader is guided toward the physiological changes at the motorneuron and motor unit level and from this to the more general biomechanical alterations. In Chapter 1 a list of the various definitions for fatigue spanning several contexts has been reported. In Chapter 2, the electrophysiological changes in terms of motor unit behavior and descending neural drive to the muscle have been studied extensively as well as the biomechanical adaptations induced. In Chapter 3 a study based on the observation of temporal features extracted from sEMG signals has been reported leading to the need of a more robust and reliable indicator during fatiguing tasks. Therefore, in Chapter 4, a novel bi-dimensional parameter is proposed. The study on sEMG-based indicators opened a scenario also on neurophysiological mechanisms underlying fatigue. For this purpose, in Chapter 5, a protocol designed for the analysis of motor unit-related parameters during prolonged fatiguing contractions is presented. In particular, two methodologies have been applied to multichannel sEMG recordings of isometric contractions of the Tibialis Anterior muscle: the state-of-the-art technique for sEMG decomposition and a coherence analysis on MU spike trains. The importance of a multi-scale approach has been finally highlighted in the context of the evaluation of cycling performance, where fatigue is one of the limiting factors. In particular, the last chapter of this thesis can be considered as a paradigm: physiological, metabolic, environmental, psychological and biomechanical factors influence the performance of a cyclist and only when all of these are kept together in a novel integrative way it is possible to derive a clear model and make correct assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic Resonance Spectroscopy (MRS) is an advanced clinical and research application which guarantees a specific biochemical and metabolic characterization of tissues by the detection and quantification of key metabolites for diagnosis and disease staging. The "Associazione Italiana di Fisica Medica (AIFM)" has promoted the activity of the "Interconfronto di spettroscopia in RM" working group. The purpose of the study is to compare and analyze results obtained by perfoming MRS on scanners of different manufacturing in order to compile a robust protocol for spectroscopic examinations in clinical routines. This thesis takes part into this project by using the GE Signa HDxt 1.5 T at the Pavillion no. 11 of the S.Orsola-Malpighi hospital in Bologna. The spectral analyses have been performed with the jMRUI package, which includes a wide range of preprocessing and quantification algorithms for signal analysis in the time domain. After the quality assurance on the scanner with standard and innovative methods, both spectra with and without suppression of the water peak have been acquired on the GE test phantom. The comparison of the ratios of the metabolite amplitudes over Creatine computed by the workstation software, which works on the frequencies, and jMRUI shows good agreement, suggesting that quantifications in both domains may lead to consistent results. The characterization of an in-house phantom provided by the working group has achieved its goal of assessing the solution content and the metabolite concentrations with good accuracy. The goodness of the experimental procedure and data analysis has been demonstrated by the correct estimation of the T2 of water, the observed biexponential relaxation curve of Creatine and the correct TE value at which the modulation by J coupling causes the Lactate doublet to be inverted in the spectrum. The work of this thesis has demonstrated that it is possible to perform measurements and establish protocols for data analysis, based on the physical principles of NMR, which are able to provide robust values for the spectral parameters of clinical use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the "Beijing" sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional liquid liquid extraction (LLE) methods require large volumes of fluids to achieve the desired mass transfer of a solute, which is unsuitable for systems dealing with a low volume or high value product. An alternative to these methods is to scale down the process. Millifluidic devices share many of the benefits of microfluidic systems, including low fluid volumes, increased interfacial area-to-volume ratio, and predictability. A robust millifluidic device was created from acrylic, glass, and aluminum. The channel is lined with a hydrogel cured in the bottom half of the device channel. This hydrogel stabilizes co-current laminar flow of immiscible organic and aqueous phases. Mass transfer of the solute occurs across the interface of these contacting phases. Using a y-junction, an aqueous emulsion is created in an organic phase. The emulsion travels through a length of tubing and then enters the co-current laminar flow device, where the emulsion is broken and each phase can be collected separately. The inclusion of this emulsion formation and separation increases the contact area between the organic and aqueous phases, therefore increasing the area over which mass transfer can occur. Using this design, 95% extraction efficiency was obtained, where 100% is represented by equilibrium. By continuing to explore this LLE process, the process can be optimized and with better understanding may be more accurately modeled. This system has the potential to scale up to the industrial level and provide the efficient extraction required with low fluid volumes and a well-behaved system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mr. Kubon's project was inspired by the growing need for an automatic, syntactic analyser (parser) of Czech, which could be used in the syntactic processing of large amounts of texts. Mr. Kubon notes that such a tool would be very useful, especially in the field of corpus linguistics, where creating a large-scale "tree bank" (a collection of syntactic representations of natural language sentences) is a very important step towards the investigation of the properties of a given language. The work involved in syntactically parsing a whole corpus in order to get a representative set of syntactic structures would be almost inconceivable without the help of some kind of robust (semi)automatic parser. The need for the automatic natural language parser to be robust increases with the size of the linguistic data in the corpus or in any other kind of text which is going to be parsed. Practical experience shows that apart from syntactically correct sentences, there are many sentences which contain a "real" grammatical error. These sentences may be corrected in small-scale texts, but not generally in the whole corpus. In order to be able to complete the overall project, it was necessary to address a number of smaller problems. These were; 1. the adaptation of a suitable formalism able to describe the formal grammar of the system; 2. the definition of the structure of the system's dictionary containing all relevant lexico-syntactic information, and the development of a formal grammar able to robustly parse Czech sentences from the test suite; 3. filling the syntactic dictionary with sample data allowing the system to be tested and debugged during its development (about 1000 words); 4. the development of a set of sample sentences containing a reasonable amount of grammatical and ungrammatical phenomena covering some of the most typical syntactic constructions being used in Czech. Number 3, building a formal grammar, was the main task of the project. The grammar is of course far from complete (Mr. Kubon notes that it is debatable whether any formal grammar describing a natural language may ever be complete), but it covers the most frequent syntactic phenomena, allowing for the representation of a syntactic structure of simple clauses and also the structure of certain types of complex sentences. The stress was not so much on building a wide coverage grammar, but on the description and demonstration of a method. This method uses a similar approach as that of grammar-based grammar checking. The problem of reconstructing the "correct" form of the syntactic representation of a sentence is closely related to the problem of localisation and identification of syntactic errors. Without a precise knowledge of the nature and location of syntactic errors it is not possible to build a reliable estimation of a "correct" syntactic tree. The incremental way of building the grammar used in this project is also an important methodological issue. Experience from previous projects showed that building a grammar by creating a huge block of metarules is more complicated than the incremental method, which begins with the metarules covering most common syntactic phenomena first, and adds less important ones later, especially from the point of view of testing and debugging the grammar. The sample of the syntactic dictionary containing lexico-syntactical information (task 4) now has slightly more than 1000 lexical items representing all classes of words. During the creation of the dictionary it turned out that the task of assigning complete and correct lexico-syntactic information to verbs is a very complicated and time-consuming process which would itself be worth a separate project. The final task undertaken in this project was the development of a method allowing effective testing and debugging of the grammar during the process of its development. The problem of the consistency of new and modified rules of the formal grammar with the rules already existing is one of the crucial problems of every project aiming at the development of a large-scale formal grammar of a natural language. This method allows for the detection of any discrepancy or inconsistency of the grammar with respect to a test-bed of sentences containing all syntactic phenomena covered by the grammar. This is not only the first robust parser of Czech, but also one of the first robust parsers of a Slavic language. Since Slavic languages display a wide range of common features, it is reasonable to claim that this system may serve as a pattern for similar systems in other languages. To transfer the system into any other language it is only necessary to revise the grammar and to change the data contained in the dictionary (but not necessarily the structure of primary lexico-syntactic information). The formalism and methods used in this project can be used in other Slavic languages without substantial changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as neither plasma Cu nor plasma cuproenzymes reflect Cu status precisely. Some blood markers (such as ceruloplasmin) indicate severe Cu depletion, but do not inversely respond to Cu excess, and are not suitable to indicate marginal states. A biomarker of Cu is needed that is sensitive to small changes in Cu status, and that responds to Cu excess as well as deficiency. Such a marker will aid in monitoring Cu status in large populations, and will help to avoid chronic health effects (for example, liver damage in chronic toxicity, osteoporosis, loss of collagen stability, or increased susceptibility to infections in deficiency). The advent of high-throughput technologies has enabled us to screen for potential biomarkers in the whole proteome of a cell, not excluding markers that have no direct link to Cu. Further, this screening allows us to search for a whole group of proteins that, in combination, reflect Cu status. The present review emphasises the need to find sensitive biomarkers for Cu, examines potential markers of Cu status already available, and discusses methods to identify a novel suite of biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

wo methods for registering laser-scans of human heads and transforming them to a new semantically consistent topology defined by a user-provided template mesh are described. Both algorithms are stated within the Iterative Closest Point framework. The first method is based on finding landmark correspondences by iteratively registering the vicinity of a landmark with a re-weighted error function. Thin-plate spline interpolation is then used to deform the template mesh and finally the scan is resampled in the topology of the deformed template. The second algorithm employs a morphable shape model, which can be computed from a database of laser-scans using the first algorithm. It directly optimizes pose and shape of the morphable model. The use of the algorithm with PCA mixture models, where the shape is split up into regions each described by an individual subspace, is addressed. Mixture models require either blending or regularization strategies, both of which are described in detail. For both algorithms, strategies for filling in missing geometry for incomplete laser-scans are described. While an interpolation-based approach can be used to fill in small or smooth regions, the model-driven algorithm is capable of fitting a plausible complete head mesh to arbitrarily small geometry, which is known as "shape completion". The importance of regularization in the case of extreme shape completion is shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both prediction-type adaptive Newton methods and a linear adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton–Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for various examples

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.