858 resultados para Robust autonomy
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
This thesis investigates face recognition in video under the presence of large pose variations. It proposes a solution that performs simultaneous detection of facial landmarks and head poses across large pose variations, employs discriminative modelling of feature distributions of faces with varying poses, and applies fusion of multiple classifiers to pose-mismatch recognition. Experiments on several benchmark datasets have demonstrated that improved performance is achieved using the proposed solution.
Resumo:
Due to the popularity of security cameras in public places, it is of interest to design an intelligent system that can efficiently detect events automatically. This paper proposes a novel algorithm for multi-person event detection. To ensure greater than real-time performance, features are extracted directly from compressed MPEG video. A novel histogram-based feature descriptor that captures the angles between extracted particle trajectories is proposed, which allows us to capture motion patterns of multi-person events in the video. To alleviate the need for fine-grained annotation, we propose the use of Labelled Latent Dirichlet Allocation, a “weakly supervised” method that allows the use of coarse temporal annotations which are much simpler to obtain. This novel system is able to run at approximately ten times real-time, while preserving state-of-theart detection performance for multi-person events on a 100-hour real-world surveillance dataset (TRECVid SED).
Resumo:
As a social species in a constantly changing environment, humans rely heavily on the informational richness and communicative capacity of the face. Thus, understanding how the brain processes information about faces in real-time is of paramount importance. The N170 is a high temporal resolution electrophysiological index of the brain's early response to visual stimuli that is reliably elicited in carefully controlled laboratory-based studies. Although the N170 has often been reported to be of greatest amplitude to faces, there has been debate regarding whether this effect might be an artifact of certain aspects of the controlled experimental stimulation schedules and materials. To investigate whether the N170 can be identified in more realistic conditions with highly variable and cluttered visual images and accompanying auditory stimuli we recorded EEG 'in the wild', while participants watched pop videos. Scene-cuts to faces generated a clear N170 response, and this was larger than the N170 to transitions where the videos cut to non-face stimuli. Within participants, wild-type face N170 amplitudes were moderately correlated to those observed in a typical laboratory experiment. Thus, we demonstrate that the face N170 is a robust and ecologically valid phenomenon and not an artifact arising as an unintended consequence of some property of the more typical laboratory paradigm.
Resumo:
We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.
Resumo:
This research has successfully developed a novel synthetic structural health monitoring system model that is cost-effective and flexible in sensing and data acquisition; and robust in the structural safety evaluation aspect for the purpose of long-term and frequent monitoring of large-scale civil infrastructure during their service lives. Not only did it establish a real-world structural monitoring test-bed right at the heart of QUT Gardens Point Campus but it can also facilitate reliable and prompt protection for any built infrastructure system as well as the user community involved.
Resumo:
In this paper we propose the hybrid use of illuminant invariant and RGB images to perform image classification of urban scenes despite challenging variation in lighting conditions. Coping with lighting change (and the shadows thereby invoked) is a non-negotiable requirement for long term autonomy using vision. One aspect of this is the ability to reliably classify scene components in the presence of marked and often sudden changes in lighting. This is the focus of this paper. Posed with the task of classifying all parts in a scene from a full colour image, we propose that lighting invariant transforms can reduce the variability of the scene, resulting in a more reliable classification. We leverage the ideas of “data transfer” for classification, beginning with full colour images for obtaining candidate scene-level matches using global image descriptors. This is commonly followed by superpixellevel matching with local features. However, we show that if the RGB images are subjected to an illuminant invariant transform before computing the superpixel-level features, classification is significantly more robust to scene illumination effects. The approach is evaluated using three datasets. The first being our own dataset and the second being the KITTI dataset using manually generated ground truth for quantitative analysis. We qualitatively evaluate the method on a third custom dataset over a 750m trajectory.
Resumo:
High-Order Co-Clustering (HOCC) methods have attracted high attention in recent years because of their ability to cluster multiple types of objects simultaneously using all available information. During the clustering process, HOCC methods exploit object co-occurrence information, i.e., inter-type relationships amongst different types of objects as well as object affinity information, i.e., intra-type relationships amongst the same types of objects. However, it is difficult to learn accurate intra-type relationships in the presence of noise and outliers. Existing HOCC methods consider the p nearest neighbours based on Euclidean distance for the intra-type relationships, which leads to incomplete and inaccurate intra-type relationships. In this paper, we propose a novel HOCC method that incorporates multiple subspace learning with a heterogeneous manifold ensemble to learn complete and accurate intra-type relationships. Multiple subspace learning reconstructs the similarity between any pair of objects that belong to the same subspace. The heterogeneous manifold ensemble is created based on two-types of intra-type relationships learnt using p-nearest-neighbour graph and multiple subspaces learning. Moreover, in order to make sure the robustness of clustering process, we introduce a sparse error matrix into matrix decomposition and develop a novel iterative algorithm. Empirical experiments show that the proposed method achieves improved results over the state-of-art HOCC methods for FScore and NMI.
Resumo:
This research explores how the concept of learner autonomy is understood and used in Vietnamese higher educational settings. Data were collected through interviews in Vietnamese with four university lecturers in Hanoi, Vietnam and then reported in an English language thesis. The problems confronted by the lecturers were in understanding the concept of learner autonomy, the complexities of translation equivalence for the concept from one language to another, and the impact of culture in interpreting the concept of learner autonomy. The paper concludes with recommendations for educators to be sensitive to cultural and linguistic considerations when transferring concepts from one culture to another.
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
There is increasing awareness and concern about law students' elevated distress levels amongst members of the Australian legal academy and the broader legal community. Disproportionately high levels of psychological distress, including depression, anxiety, and substance abuse, have been consistently documented in decades of research on American law student samples. Questions about whether these trends were an American phenomenon, and due to 'differences in demographics, pedagogy and culture' may not apply to Australian law students, began to be empirically addressed with the publication of the Brain and Mind Research Institute's Courting the Blues monograph in 2009. Amongst other findings, the comprehensive research in this monograph indicated that more than one-third of the surveyed law students from Australian universities experience high levels of psychological distress. Recent empirical research at a number of individual Australian law schools reveals similar trends, suggesting that aspects of the legal education experience may contribute to widespread distress levels amongst law students in Australia, as in the United States.
Resumo:
This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.