884 resultados para Reverse Auction
Resumo:
A rapid, sensitive and highly specific detection method for grass carp hemorrhagic virus (GCHV) based on a reverse transcription-polymerase chain reaction (RT-PCR) has been developed. Two pairs of PCR primers were synthesized according to the cloned cDNA sequences of the GCHV-861 strain. For each primer combination, only one specific major product was obtained when amplification was performed by using the genomic dsRNA of GCHV-861 strain. The lengths of their expected products were 320 and 223 bp, respectively. No products were obtained when nucleic acids other than GCHV-861 genomic RNA were used as RT-PCR templates. To assess the sensitivity of the method, dilutions of purified GCHV-861 dsRNA total genome (0.01 pg up to 1000 pg) were amplified and quantities of as little as 0.1 pg of purified dsRNA were detectable when the amplification product was analyzed by 1.5% agarose gel electrophoresis. This technique could detect GCHV-861 not only in infected cell culture fluids, but also in infected grass carp Ctenopharyngodon idellus and rare minnow Gobiocypris rarus with or without hemorrhagic symptoms. The results show that the RT-PCR amplification method is useful for the direct detection of GCHV.
Resumo:
Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200 degrees C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. (c) 2006 American Institute of Physics.
Resumo:
The reverse I(V) measurement and analytic calculation of the electron transport across a Ti/6H-SiC Schottky barrier are presented. Based on the consideration of the barrier fluctuations and the barrier height shift caused by image charge and the applied voltage drop across Ti/SiC interfical layer, a comprehensive analytical model for the reverse tunneling current is developed using a WKB calculation of the tunneling probability through a reverse biased Schottky barrier. This model takes into account the main reverse conduction mechanism, such as field emission, thermionic field emission and thermionic emission. The fact that the simulated results are in good agreement with the experimental data indicates that the barrier height shift and barrier fluctuation can lead to reverse current densities orders of magnitude higher than that obtained from a simple theory. It is shown that the field and thermionic field emission processes, in which carries can tunnel through the barrier but cannot surmount it with insufficient thermal energy, dominate the reverse characteristics of a SiC Schottky contacts in a normal working condition.
Resumo:
Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the dressed effects of non-degenerate four-wave mixing (NDFWM) and demonstrated a phase-sensitive method of studying the fifth-order nonlinear susceptibility due to atomic coherence in RN-type four-level system. In the presence of a strong coupling field, NDFWM spectrum exhibits Autler-Townes splitting, accompanied by either suppression or enhancement of the NDFWM signal, which is directly related to the competition between the absorption and dispersion contributions. The heterodyne-detected nonlinear absorption and dispersion of six-wave mixing signal in the RN-type system show that the hybrid radiation-matter detuning damping oscillation is in the THz range and can be controlled and modified through the colour-locked correlation of twin noisy fields.
Resumo:
Neutron induced defect levels in high resistivity silicon detectors have been studied using a current-based macroscopic defect analysis system: thermally stimulated current (TSC) and current deep level transient spectroscopy (I-DLTS). These studies have been correlated to the traditional C-V, I-V, and transient current and charge techniques (TCT/TChT) after neutron radiation and subsequent thermal anneals. It has been found that the increases of the space charge density, N-eff, in irradiated detectors after thermal anneals (N-eff reverse anneal) correspond to the increases of deep levels in the silicon bandgap. In particular, increases of the double vacancy center (V-V and V-V-- -) and/or C-i-O-i level have good correlations with the N-eff reverse anneal. It has also been observed that the leakage current of highly irradiated (Phi(n) > 10(13) n/cm(2)) detectors increases after thermal anneals, which is different from the leakage current annealing behavior of slightly irradiated (Phi(n) < 10(13) n/cm(2)) detectors. It is apparent that V-V center and/or C-i-O-i level play important roles in both N-eff and leakage current degradations for highly irradiated high resistivity silicon detectors.
Resumo:
于2010-11-23批量导入
Resumo:
Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In the study, a novel microemulsion system, consisting of water, iso-propanol and n-butanol, was developed to synthesize the nanostructured La0.95Ba0.05MnAl11O19 catalyst with high surface area and catalytic activity for methane combustion.
Resumo:
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Barium lithium fluoride nanocrystals were synthesized in cetyltrimethylammonium bromide (CTAB)/2-octanol/water microemulsion systems. The impurity peaks in XRD patterns were not determined. The result of SEM confirmed that the average sizes and shape of the BaLiF3 nanocrystals. The formation of BaLiF3 and particles size were strongly affected by water content. With increasing water content and reaction times, the size of the particle. increases. Meanwhile, the solvent was also found to play a key role in the synthesis of the BaLiF3 nanocrystals.