836 resultados para Research networks
Resumo:
Public awareness of large infrastructure projects, many of which are delivered through networked arrangements is high for several reasons. These projects often involve significant public investment; they may involve multiple and conflicting stakeholders and can potentially have significant environmental impacts (Lim and Yang, 2008). To produce positive outcomes from infrastructure delivery it is imperative that stakeholder “buy in” be obtained particularly about decisions relating to the scale and location of infrastructure. Given the likelihood that stakeholders will have different levels of interest and investment in project outcomes, failure to manage this dynamic could potentially jeopardise project delivery by delaying or halting the construction of essential infrastructure. Consequently, stakeholder engagement has come to constitute a critical activity in infrastructure development delivered through networks. This paper draws on stakeholder theory and governance network theory and provides insights into how three multi-level networks within the Roads Alliance in Queensland engage with stakeholders in the delivery of road infrastructure. New knowledge about stakeholders has been obtained by testing a model of Stakeholder Salience and Engagement which combines and extends the stakeholder identification and salience theory and the ladder of stakeholder management and engagement. By applying this model, the broad research question: “How do governance networks engage with stakeholders?” has been addressed. A multiple embedded case study design was selected as the overall approach to explore, describe, explain and evaluate how stakeholder engagement occurred in three governance networks delivering road infrastructure in Queensland. The outcomes of this research contribute to and extend stakeholder theory by showing how stakeholder salience impacts on decisions about the types of engagement processes implemented. Governance network theory is extended by showing how governance networks interact with stakeholders. From a practical perspective this research provides governance networks with an indication of how to more effectively undertake engagement with different types of stakeholders.
Resumo:
This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social neurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions that emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of intra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted in varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research on small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams, to verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.
Resumo:
The major purpose of Vehicular Ad Hoc Networks (VANETs) is to provide safety-related message access for motorists to react or make a life-critical decision for road safety enhancement. Accessing safety-related information through the use of VANET communications, therefore, must be protected, as motorists may make critical decisions in response to emergency situations in VANETs. If introducing security services into VANETs causes considerable transmission latency or processing delays, this would defeat the purpose of using VANETs to improve road safety. Current research in secure messaging for VANETs appears to focus on employing certificate-based Public Key Cryptosystem (PKC) to support security. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This paper proposes an efficient public key management system for VANETs: the Public Key Registry (PKR) system. Not only does this paper demonstrate that the proposed PKR system can maintain security, but it also asserts that it can improve overall performance and scalability at a lower cost, compared to the certificate-based PKC scheme. It is believed that the proposed PKR system will create a new dimension to the key management and verification services for VANETs.
Resumo:
Mixed use typologies and pedestrian networks are two strategies commonly applied in design of the contemporary city. These approaches, aimed towards the creation of a more sustainalble urban environment, have their roots in the traditional, pre-industrial towns; they characterize urban form, articulating the tension between privaate and public realms through a series of typological variations as well as stimulating commercial activity in the city centre. Arcades, loggias and verandas are just some of the elements which can mediate this tension. Historically they have defined physical and social spaces with particular character; in the contemporary city these features are applied to deform the urban form and create a porous, dynamic morphology. This paper, comparing case studies from Italy, Japan and Australia, investigates how the design of the transition zone can define hybrid pedestrian networks, where a clear distinction between the public and private realms is no longer applicable. Pedestrians use the city in a dynamic way, combining trajectories on the public street with ones on the fringe or inside of the private built environment. In some cases, cities offer different pedestrian network possibilities at different times, as the commercial precints are subject to variations in accessibility across various timeframes. These walkable systems have an impact on the urban form and identity of places, redefining typologies and requiring an in depth analysis through plan, section and elevation diagrams.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
Resumo:
This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).
Resumo:
Over less than a decade, we have witnessed a seismic shift in the way knowledge is produced and exchanged. This is opening up new opportunities for civic and community engagement, entrepreneurial behaviour, sustainability initiatives and creative practices. It also has the potential to create fresh challenges in areas of privacy, cyber-security and misuse of data and personal information. The field of urban informatics focuses on the use and impacts of digital media technology in urban environments. Urban informatics is a dynamic and cross-disciplinary area of inquiry that encapsulates social media, ubiquitous computing, mobile applications and location-based services. Its insights suggest the emergence of a new economic force with the potential for driving innovation, wealth and prosperity through technological advances, digital media and online networks that affect patterns of both social and economic development. Urban informatics explores the intersections between people, place and technology, and their implications for creativity, innovation and engagement. This paper examines how the key learnings from this field can be used to position creative and cultural institutions such as galleries, libraries, archives and museums (GLAM) to take advantage of the opportunities presented by these changing social and technological developments. This paper introduces the underlying principles, concepts and research areas of urban informatics, against the backdrop of modern knowledge economies. Both theoretical ideas and empirical examples are covered in this paper. The first part discusses three challenges: a. People, and the challenge of creativity: The paper explores the opportunities and challenges of urban informatics that can lead to the design and development of new tools, methods and applications fostering participation, the democratisation of knowledge, and new creative practices. b. Technology, and the challenge of innovation: The paper examines how urban informatics can be applied to support user-led innovation with a view to promoting entrepreneurial ideas and creative industries. c. Place, and the challenge of engagement: The paper discusses the potential to establish place-based applications of urban informatics, using the example of library spaces designed to deliver community and civic engagement strategies. The discussion of these challenges is illustrated by a review of projects as examples drawn from diverse fields such as urban computing, locative media, community activism, and sustainability initiatives. The second part of the paper introduces an empirically grounded case study that responds to these three challenges: The Edge, the Queensland Government’s Digital Culture Centre which is an initiative of the State Library of Queensland to explore the nexus of technology and culture in an urban environment. The paper not only explores the new role of libraries in the knowledge economy, but also how the application of urban informatics in prototype engagement spaces such as The Edge can provide transferable insights that can inform the design and development of responsive and inclusive new library spaces elsewhere. To set the scene and background, the paper begins by drawing the bigger picture and outlining some key characteristics of the knowledge economy and the role that the creative and cultural industries play in it, grasping new opportunities that can contribute to the prosperity of Australia.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
The primary goal of the Vehicular Ad Hoc Network (VANET) is to provide real-time safety-related messages to motorists to enhance road safety. Accessing and disseminating safety-related information through the use of wireless communications technology in VANETs should be secured, as motorists may make critical decisions in dealing with an emergency situation based on the received information. If security concerns are not addressed in developing VANET systems, an adversary can tamper with, or suppress, the unprotected message to mislead motorists to cause traffic accidents and hazards. Current research on secure messaging in VANETs focuses on employing the certificate-based Public Key Infrastructure (PKI) scheme to support message encryption and digital signing. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This thesis has proposed a novel public key verification and management approach for VANETs; namely, the Public Key Registry (PKR) regime. Compared to the VANET PKI scheme, this new approach can satisfy necessary security requirements with improved performance and scalability, and at a lower cost by reducing the security overheads of message transmission and eliminating digital certificate deployment and maintenance issues. The proposed PKR regime consists of the required infrastructure components, rules for public key management and verification, and a set of interactions and associated behaviours to meet these rule requirements. This is achieved through a system design as a logic process model with functional specifications. The PKR regime can be used as development guidelines for conforming implementations. An analysis and evaluation of the proposed PKR regime includes security features assessment, analysis of the security overhead of message transmission, transmission latency, processing latency, and scalability of the proposed PKR regime. Compared to certificate-based PKI approaches, the proposed PKR regime can maintain the necessary security requirements, significantly reduce the security overhead by approximately 70%, and improve the performance by 98%. Meanwhile, the result of the scalability evaluation shows that the latency of employing the proposed PKR regime stays much lower at approximately 15 milliseconds, whether operating in a huge or small environment. It is therefore believed that this research will create a new dimension to the provision of secure messaging services in VANETs.
Resumo:
Collaboration between academic and library faculty is an important topic of discussion and research among academic librarians. Partnerships are vital for developing effective information literacy education. The research reported in this paper aims to develop an understanding of academic collaborators by analyzing academic faculty’s teaching social network. Academic faculty teaching social networks have not been previously described through the lens of social network analysis. A teaching social network is comprised of people and their communication channels that affect academic faculty when they design and deliver their courses. Social network analysis was the methodology used to describe the teaching social networks. The preliminary results show academic faculty were more affected by the channels of communication in how they taught (pedagogy) than what they taught (course content). This study supplements the existing research on collaboration and information literacy. It provides both academic and library faculty with added insight into their relationships.
Resumo:
Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.
Resumo:
In recent times considerable research attention has been directed to understanding dark networks, especially criminal and terrorist networks. Dark networks are those in which member motivations are self rather than public interested, achievements come at the cost of other individuals, groups or societies and, in addition, their activities are both ‘covert and illegal’ (Raab & Milward, 2003: 415). This ‘darkness’ has implications for the way in which these networks are structured, the strategies adopted and their recruitment methods. Such entities exhibit distinctive operating characteristics including most notably the tension between creating an efficient network structure while retaining the ability to hide from public view while avoiding catastrophic collapse should one member cooperate with authorities (Bouchard 2007). While theoretical emphasis has been on criminal and terrorist networks, recent work has demonstrated that corrupt police networks exhibit some distinctive characteristics. In particular, these entities operate within the shadows of a host organisation - the Police Force and distort the functioning of the ‘Thin Blue Line’ as the interface between the law abiding citizenry and the criminal society. Drawing on data derived from the Queensland Fitzgerald Commission of Enquiry into Police Misconduct and related documents, this paper examines the motivations, structural properties and operational practices of corrupt police networks and compares and contrasts these with other dark networks with ‘bright’ public service networks. The paper confirms the structural differences between dark corrupt police networks and bright networks and suggests. However, structural embeddedness alone is found to be an insufficient theoretical explanation for member involvement in networks and that a set of elements combine to impact decision-making. Although offering important insights into network participation, the paper’s findings are especially pertinent in identifying additional points of intervention for police corruption networks.
Resumo:
Twitter is now well established as the world’s second most important social media platform, after Facebook. Its 140-character updates are designed for brief messaging, and its network structures are kept relatively flat and simple: messages from users are either public and visible to all (even to unregistered visitors using the Twitter website), or private and visible only to approved ‘followers’ of the sender; there are no more complex definitions of degrees of connection (family, friends, friends of friends) as they are available in other social networks. Over time, Twitter users have developed simple, but effective mechanisms for working around these limitations: ‘#hashtags’, which enable the manual or automatic collation of all tweets containing the same #hashtag, as well allowing users to subscribe to content feeds that contain only those tweets which feature specific #hashtags; and ‘@replies’, which allow senders to direct public messages even to users whom they do not already follow. This paper documents a methodology for extracting public Twitter activity data around specific #hashtags, and for processing these data in order to analyse and visualize the @reply networks existing between participating users – both overall, as a static network, and over time, to highlight the dynamic structure of @reply conversations. Such visualizations enable us to highlight the shifting roles played by individual participants, as well as the response of the overall #hashtag community to new stimuli – such as the entry of new participants or the availability of new information. Over longer timeframes, it is also possible to identify different phases in the overall discussion, or the formation of distinct clusters of preferentially interacting participants.
Resumo:
Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.
Resumo:
There is a continued need to consider ways to prevent early adolescent engagement in a variety of harmful risk-taking behaviours for example, violence, road-related risks and alcohol use. The current prospective study examined adolescents’ reports of intervening to try and stop friends’ engagement in such behaviours among 207 early adolescents (mean age = 13.51 years, 50.1% females). Findings showed that intervening behaviour after three months was predicted by the confidence to intervene which in turn was predicted by student and teacher support although not parental support. The findings suggest that the benefits of positive relationship experiences might extend to the safety of early adolescent friendship groups particularly through the development of confidence to try and stop friends’ risky and dangerous behaviours. Findings from the study support the important role of the school in creating a culture of positive adolescent behaviour whereby young people take social responsibility.