929 resultados para Rainfall anomalies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) approximate to 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) approximate to 0.05. We note that ``islands'' of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) approximate to 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of LaMn0.5Co0.5O3 belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)-oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn0.5Co0.5O3 crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terrestrial water storage (TWS) plays a key role in the global water cycle and is highly influenced by climate variability and human activities. In this study, monthly TWS, rainfall and Ganga-Brahmaputra river discharge (GBRD) are analysed over India for the period of 2003-12 using remote sensing satellite data. The spatial pattern of mean TWS shows a decrease over a large and populous region of Northern India comprising the foothills of the Himalayas, the Indo-Gangetic Plains and North East India. Over this region, the mean monthly TWS exhibits a pronounced seasonal cycle and a large interannual variability, highly correlated with rainfall and GBRD variations (r > 0.8) with a lag time of 2 months and 1 month respectively. The time series of monthly TWS shows a consistent and statistically significant decrease of about 1 cm year(-1) over Northern India, which is not associated with changes in rainfall and GBRD. This recent change in TWS suggests a possible impact of rapid industrialization, urbanization and increase in population on land water resources. Our analysis highlights the potential of the Earth-observation satellite data for hydrological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regionalization of extreme rainfall is useful for various applications in hydro-meteorology. There is dearth of regionalization studies on extreme rainfall in India. In this perspective, a set of 25 regions that are homogeneous in 1-, 2-, 3-, 4- and 5-day extreme rainfall is delineated based on seasonality measure of extreme rainfall and location indicators (latitude, longitude and altitude) by using global fuzzy c-means (GFCM) cluster analysis. The regions are validated for homogeneity in L-moment framework. One of the applications of the regions is in arriving at quantile estimates of extreme rainfall at sparsely gauged/ungauged locations using options such as regional frequency analysis (RFA). The RFA involves use of rainfall-related information from gauged sites in a region as the basis to estimate quantiles of extreme rainfall for target locations that resemble the region in terms of rainfall characteristics. A procedure for RFA based on GFCM-delineated regions is presented and its effectiveness is evaluated by leave-one-out cross validation. Error in quantile estimates for ungauged sites is compared with that resulting from the use of region-of-influence (ROI) approach that forms site-specific regions exclusively for quantile estimation. Results indicate that error in quantile estimates based on GFCM regions and ROI are fairly close, and neither of them is consistent in yielding the least error over all the sites. The cluster analysis approach was effective in reducing the number of regions to be delineated for RFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rivers of the world discharge about 36000 km 3 of freshwater into the ocean every year. To investigate the impact of river discharge on climate, we have carried out two 100 year simulations using the Community Climate System Model (CCSM3), one including the river runoff into the ocean and the other excluding it. When the river discharge is shut off, global average sea surface temperature (SST) rises by about 0.5 degrees C and the Indian Summer Monsoon Rainfall (ISMR) increases by about 10% of the seasonal total with large increase in the eastern Bay of Bengal and along the west coast of India. In addition, the frequency of occurrence of La Nina-like cooling events in the equatorial Pacific increases and the correlation between ISMR and Pacific SST anomalies become stronger. The teleconnection between the SST anomalies in the Pacific and monsoon is effected via upper tropospheric meridional temperature gradient and the North African-Asian Jet axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high-pressure Raman-scattering studies on single-crystal ReO3 up to 26.9 GPa at room temperature, complemented by first-principles density functional calculations to assign the modes and to develop understanding of the subtle features of the low-pressure phase transition. The pressure (P) dependence of phonon frequencies (omega) reveals three phase transitions at 0.6, 3, and 12.5 GPa with characteristic splitting and changes in the slope of omega(P). Our first-principles theoretical analysis confirms the role of the rotational modes of ReO6, M-3, to the lowest pressure structural transition, and shows that the transition from the Pm3m to the Im3 structure is a weak first-order transition, originating from the strong anharmonic coupling of the M-3 modes with the acoustic modes (strain).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using remotely sensed Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall and topographic data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM), the impact of oroghraphical aspects such as topography, spatial variability of elevation and altitude of apexes are examined to investigate capacious summer monsoon rainfall over the Western Ghats (WG) of India. TRMM 3B42 v7 rainfall data is validated with Indian Meteorological Department (IMD) gridded rainfall data at 0.5 degrees resolution over the WG. The analysis of spatial pattern of monsoon rainfall with orography of the WG ascertains that the grade of orographic precipitation depends mainly on topography of the mountain barrier followed by steepness of windward side slope and altitude of the mountain. Longer and broader, i.e. cascaded topography, elevated summits and gradually increasing slopes impel the enhancement in precipitation. Comparing topography of various states of the WG, it has been observed that windward side of Karnataka receives intense rainfall in the WG during summer monsoon. It has been observed that the rainfall is enhanced before the peak of the mountain and confined up to the height about 800m over the WG. In addition to this, the spatial distribution of heavy and very heavy rainfall events in the last 14 years has also been explored. Heavy and very heavy rain events on this hilly terrain are categorized with a threshold of precipitation (R) in the range 150>R>120mmday(-1) and exceeding 150mmday(-1) using probability distribution of TRMM 3B42 v7 rainfall. The areas which are prone to heavy precipitation are identified. The study would help policy makers to manage the hazard scenario and, to improve weather predictions on mountainous terrain of the WG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a comprehensive evaluation of five widely used multisatellite precipitation estimates (MPEs) against 1 degrees x 1 degrees gridded rain gauge data set as ground truth over India. One decade observations are used to assess the performance of various MPEs (Climate Prediction Center (CPC)-South Asia data set, CPC Morphing Technique (CMORPH), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks, Tropical Rainfall Measuring Mission's Multisatellite Precipitation Analysis (TMPA-3B42), and Global Precipitation Climatology Project). All MPEs have high detection skills of rain with larger probability of detection (POD) and smaller ``missing'' values. However, the detection sensitivity differs from one product (and also one region) to the other. While the CMORPH has the lowest sensitivity of detecting rain, CPC shows highest sensitivity and often overdetects rain, as evidenced by large POD and false alarm ratio and small missing values. All MPEs show higher rain sensitivity over eastern India than western India. These differential sensitivities are found to alter the biases in rain amount differently. All MPEs show similar spatial patterns of seasonal rain bias and root-mean-square error, but their spatial variability across India is complex and pronounced. The MPEs overestimate the rainfall over the dry regions (northwest and southeast India) and severely underestimate over mountainous regions (west coast and northeast India), whereas the bias is relatively small over the core monsoon zone. Higher occurrence of virga rain due to subcloud evaporation and possible missing of small-scale convective events by gauges over the dry regions are the main reasons for the observed overestimation of rain by MPEs. The decomposed components of total bias show that the major part of overestimation is due to false precipitation. The severe underestimation of rain along the west coast is attributed to the predominant occurrence of shallow rain and underestimation of moderate to heavy rain by MPEs. The decomposed components suggest that the missed precipitation and hit bias are the leading error sources for the total bias along the west coast. All evaluation metrics are found to be nearly equal in two contrasting monsoon seasons (southwest and northeast), indicating that the performance of MPEs does not change with the season, at least over southeast India. Among various MPEs, the performance of TMPA is found to be better than others, as it reproduced most of the spatial variability exhibited by the reference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short-term real-time operation model with fuzzy state variables is developed for irrigation of multiple crops based on earlier work on long-term steady-state policy. The features of the model that distinguish it from the earlier work are (1) apart from inclusion of fuzziness in reservoir storage and in soil moisture of crops, spatial variations in rainfall and soil moisture of crops are included in the real-time operation model by considering gridded command area with a grid size of 0.5 degrees latitude by 0.5 degrees longitude; (2) the water allocation model and soil moisture balance equations are integrated with the real-time operation model with consideration of ponding water depth for Paddy crop; the model solution specifies reservoir releases for irrigation in a 10-day time period and allocations among the crops on a daily basis at each grid by maintaining soil moisture balance at the end of the day; and (3) the release policy is developed using forecasted daily rainfall data of each grid and is implemented for the current time period using actual 10-day inflow and actual daily rainfall of each grid. The real-time operation model is applied to Bhadra Reservoir in Karnataka, India. The results obtained using the real-time operation model are compared with those of the standard operating policy model. Inclusion of fuzziness in reservoir storage and soil moisture of crops captures hydrologic uncertainties in real time. Considerations of irrigation decisions on a daily basis and the gridded command area result in variations in allocating water to the crops, variations in actual crop evapotranspiration, and variations in soil moisture of the crops on a daily basis for each grid of the command area. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We begin by providing observational evidence that the probability of encountering very high and very low annual tropical rainfall has increased significantly in the most recent decade (1998-present) compared with the preceding warming era (1979-1997). These changes over land and ocean are spatially coherent and comprise a rearrangement of very wet regions and a systematic expansion of dry zones. While the increased likelihood of extremes is consistent with a higher average temperature during the pause (compared with 1979-1997), it is important to note that the periods considered are also characterized by a transition from a relatively warm to a cold phase of the El Nino Southern Oscillation (ENSO). To probe the relation between contrasting phases of ENSO and extremes in accumulation further, a similar comparison is performed between 1960 and 1978 (another extended cold phase of ENSO) and the aforementioned warming era. Though limited by land-only observations, in this cold-to-warm transition, remarkably, a near-exact reversal of extremes is noted both statistically and geographically. This is despite the average temperature being higher in 1979-1997 compared with 1960-1978. Taking this evidence together, we propose that there is a fundamental mode of natural variability, involving the waxing and waning of extremes in accumulation of global tropical rainfall with different phases of ENSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have addressed the question of whether the massive deficit of 42% in rainfall over the Indian region in June 2014 can be attributed primarily to the El Nino. We have shown that the variation of convection over the Northern part of the Tropical West Pacific (NWTP: 120-150E, 20-30N) plays a major role in determining the all-India rainfall in June with deficit (excess) in rainfall associated with enhancement (suppression) of convection over NWTP. In June 2014, the outgoing long wave radiation (OLR) anomaly over this region was unfavourable, whereas in June 2015, the OLR anomaly over NWTP was favourable and the all-India rainfall was 16% higher than the long-term average. We find that during El Nino, when the convection over the equatorial central Pacific intensifies, there is a high propensity for intensification of convection over NWTP. Thus, El Nino appears to have an impact on the rainfall over the Indian region via its impact on the convection over the West Pacific, particularly over NWTP. This occurred in June 2014, which suggests that the large deficit in June 2014, could be primarily attributed to the El Nino acting via intensification of convection over NWTP.