920 resultados para RUMINAL FERMENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo adaptar a fase fermentativa da técnica de digestibilidade in vitro proposta por Tilley e Terry (1963) para a descrição da cinética de degradação ruminal da matéria seca (MS) de volumosos. Para tal, comparou os resultados da cinética de degradação ruminal obtidos pela técnica in situ aos resultados obtidos pela fase fermentativa da técnica de Tilley e Terry (1963) empregando diferentes tempos de incubação das amostras de forrageiras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Danny S. Tuckwell, Matthew J. Nicholson, Christopher S. McSweeney, Michael K. Theodorou and Jayne L. Brookman (2005). The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology, 151 (5) pp.1557-1567 Sponsorship: BBSRC / Stapledon Memorial Trust RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW <500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novos processos fermentativos, designados por processos de Fermentação Extractiva, são caracterizados por apresentarem etapas de produção e extracção em simultâneo. A extracção líquido-líquido como técnica de separação é amplamente usado na indústria química pela sua simplicidade, baixo custo e facilidade de extrapolação de escala. No entanto o uso de solventes orgânicos nestes processos potencia os riscos ocupacionais e ambientais. Neste contexto, o uso de sistemas de duas fases aquosas baseados em líquidos iónicos, apresenta-se como uma técnica eficaz para a separação e purificação de produtos biológicos. Este trabalho apresenta um estudo integrado sobre o uso de líquidos iónicos não aromáticos foram determinados. A capacidade para a formação de sistemas de duas fases foi estudada para uma vasta gama de líquidos iónicos hidrofílicos com diferentes aniões, catiões e cadeias alqúilicas. A capacidade de separação e purificação de um largo conjunto de líquidos iónicos foi posteriormente investigada, recorrendo-se ao uso de várias biomoléculas modelo de diferentes graus de complexidade, um amino-acido (L-triptofano) e duas enzimas lipolíticas (enzima produzida pela bactéria Bacillus sp. e Candida antarctica lipase B – CaLB). Esta última foi ainda usada para um estudo de biocompatibilidade, tendo sido determinado o efeito de diferentes LIs hidrofílicos na sua actividade enzimática. Este trabalho mostra um estudo ecotoxicológico duma vasta gama de líquidos iónicos e espécies aquáticas, inseridas em diversos níveis tróficos. A bioacumulação foi investigada através do estudo dos coeficientes de distribuição 1-octanol-água (Dow).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aguardente de medronho is the name given in Portugal to a spirit made from the fermented fruit of Arbutus unedo (strawberry tree), a plant grown in the Mediterranean region. In order to gain a better understanding of the fermentation process, as it is performed in the farms, a natural fermentation with wild microbiota was carried out during 36 days, and some physicochemical and microbiological parameters were studied. The microbial parameters analyzed were total viable, lactic and acetic acids bacteria, and yeast counts. The physicochemical parameters monitored were sugars, minerals, ethanol, organic acids and pH. Yeasts were the main responsible for the fermentation of the fruits, as the lactic and acetic acids bacteria are absent. As the fermentation progressed, the sugars increased during the first 2 days and gradually decreased along the fermentation period. Maintaining the good quality of the product could contribute to the preservation and valorization of traditional resources that are of great importance to prevent their disappearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Icewine is an intensely s\veet dessert \vine fermented from the juice of naturally frozen grapes. Icewine fermentation poses many challenges such as failure to reach desired ethanol levels and production of high levels of volatile acidity in the fonn of acetic acid. This study investigated the impact of micronutrient addition (GO-FERM® and NATSTEP®) during the rehydration stage of the commercial \vine yeast Saccharomyces cerevisiae KI-VIII6 during Ice\vine fermentation. Sterile-filtered and unfiltered Riesling Ice\vine juice was inoculated \vith yeast rehydrated under four different conditions: in water only; with GO-FERM®; with NATSTEP®; or the combination of both micronutrient products in the rehydration water. Using sterile-filtered Icewine juice, yeast rehydration had a positive impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. In the sterile-filtered fermentation, yeast rehydrated with micronutrients generated 9-times less acetic acid per gram of sugar in the first 48 hours compared to yeast rehydrated only \vith water and resulted in a 17% reduction in acetic acid in the final \vine \vhen normalized to sugar consumed. However, the sterile-filtered fermentations likely became stuck due to the overc1arification of the juice as evidenced from the low sugar consumption (117 gIL) that could not be completely overcome by the micronutrient treatments (144 gIL sugar consumed) to reach a target ethanol of IO%v/v. Contrary to \vhat \vas observed in the sterile-filtered treatements, using unfiltered Ice\vine juice, yeast micronutrient addition had no significant impact of reducing the rate of acetic acid produced as a function of sugar consumed, reducing the ratio of acetic acid/ethanol and reducing the ratio of acetic acid/glycerol. However, in the unfiltered fermentation, micronutrient addition during yeast rehydration caused a reduction in the acetic acid produced as a function of sugar consumed up to 150 giL sugar consumed.. In contrast to the sterile-filtered fermentations, the unfiltered fermentations did not become stuck as evidenced from the higher sugar consumption (l47-174g1L). The largest effects of micronutrient addition are evident in the first two days of both sterile and unfiltered fermentations.