920 resultados para RESIDENCE TIME DISTRIBUTION
Resumo:
A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication. © 2008 American Institute of Physics.
Resumo:
The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (≤1000 K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.
Resumo:
The reliable response to weak biological signals requires that they be amplified with fidelity. In E. coli, the flagellar motors that control swimming can switch direction in response to very small changes in the concentration of the signaling protein CheY-P, but how this works is not well understood. A recently proposed allosteric model based on cooperative conformational spread in a ring of identical protomers seems promising as it is able to qualitatively reproduce switching, locked state behavior and Hill coefficient values measured for the rotary motor. In this paper we undertook a comprehensive simulation study to analyze the behavior of this model in detail and made predictions on three experimentally observable quantities: switch time distribution, locked state interval distribution, Hill coefficient of the switch response. We parameterized the model using experimental measurements, finding excellent agreement with published data on motor behavior. Analysis of the simulated switching dynamics revealed a mechanism for chemotactic ultrasensitivity, in which cooperativity is indispensable for realizing both coherent switching and effective amplification. These results showed how cells can combine elements of analog and digital control to produce switches that are simultaneously sensitive and reliable. © 2012 Ma et al.
Resumo:
Synthesis of high quality boron carbide (B4C) powders is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3)/polyvinyl acetate (PVAc) product. Precursor solutions are prepared via free radical polymerisation of vinyl acetate (VA) monomer in methanol in the presence of dissolved H3BO3. A condensed product is then formed by flash evaporation under vacuum. As excess VA monomer is removed at the evaporation step, the polymerisation time is used to manage availability of carbon for reaction. This control of carbon facilitates dispersion of H3BO3 in solution due to the presence of residual VA monomer. B4C powders with very low residual carbon are formed at temperatures as low as 1,250 °C with a 4 hour residence time.
Resumo:
The 12.7-10.5 Ma Cougar Point Tuff in southern Idaho, USA, consists of 10 large-volume (>10²-10³ km³ each), high-temperature (800-1000 °C), rhyolitic ash-flow tuffs erupted from the Bruneau-Jarbidge volcanic center of the Yellowstone hotspot. These tuffs provide evidence for compositional and thermal zonation in pre-eruptive rhyolite magma, and suggest the presence of a long-lived reservoir that was tapped by numerous large explosive eruptions. Pyroxene compositions exhibit discrete compositional modes with respect to Fe and Mg that define a linear spectrum punctuated by conspicuous gaps. Airfall glass compositions also cluster into modes, and the presence of multiple modes indicates tapping of different magma volumes during early phases of eruption. Equilibrium assemblages of pigeonite and augite are used to reconstruct compositional and thermal gradients in the pre-eruptive reservoir. The recurrence of identical compositional modes and of mineral pairs equilibrated at high temperatures in successive eruptive units is consistent with the persistence of their respective liquids in the magma reservoir. Recurrence intervals of identical modes range from 0.3 to 0.9 Myr and suggest possible magma residence times of similar duration. Eruption ages, magma temperatures, Nd isotopes, and pyroxene and glass compositions are consistent with a long-lived, dynamically evolving magma reservoir that was chemically and thermally zoned and composed of multiple discrete magma volumes.
Resumo:
Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them-namely, the dwell time distribution-has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.
Resumo:
No-tillage (NT) practice, where straw is retained on the soil surface, is increasingly being used in cereal cropping systems in Australia and elsewhere. Compared to conventional tillage (CT), where straw is mixed with the ploughed soil, NT practice may reduce straw decomposition, increase nitrogen immobilisation and increase organic carbon in the soil. This study examined 15N-labelled wheat straw (stubble) decomposition in four treatments (NT v. CT, with N rates of 0 and 75 kg/ha.year) and assessed the tillage and fertiliser N effects on mineral N and organic C and N levels over a 10-year period in a field experiment. NT practice decreased the rate of straw decomposition while fertiliser N application increased it. However, there was no tillage practice x N interaction. The mean residence time of the straw N in soil was more than twice as long under the NT (1.2 years) as compared to the CT practice (0.5 years). In comparison, differences in mean residence time due to N fertiliser treatment were small. However, tillage had generally very little effect on either the amounts of mineral N at sowing or soil organic C (and N) over the study period. While application of N fertiliser increased mineral N, it had very little effect on organic C over a 10-year period. Relatively rapid decomposition of straw and short mean residence time of straw N in a Vertisol is likely to have very little long-term effect on N immobilisation and organic C level in an annual cereal cropping system in a subtropical, semiarid environment. Thus, changing the tillage practice from CT to NT may not necessitate additional N requirement unless use is made of additional stored water in the soil or mineral N loss due to increased leaching is compensated for in N supply to crops.
Resumo:
Temporal and spatial patterns in parasite assemblages were examined to evaluate the degree of movement and connectivity of post-recruitment life-history stages of a large, non-diadromous tropical estuarine teleost, king threadfin Polydactylus macrochir, collected from 18 locations across northern Australia. Ten parasites types (juvenile stages of two nematodes and seven cestodes, and adults of an acanthocephalan) were deemed to be suitable for use as biological tags, in that they were considered to have a long residence time in the fish, were relatively easy to find and were morphologically very different to each other which aided discrimination. Univariate and discriminant function analysis of these parasites revealed little difference in temporal replicates collected from five locations, suggesting that the parasite communities were stable over the timeframes explored. Univariate, discriminant function, and BrayCurtis similarity analyses indicated significant spatial heterogeneity, with BrayCurtis classification accuracies ranging from 55 to 100% for locations in north-western and northern Australia, 24 to 88% in the Gulf of Carpentaria, and 39 to 88% on the east coast of Queensland. Few differences were observed among locations separated by <200 km. The observed patterns of parasite infection are in agreement with concurrent studies of movement and connectivity of P. macrochir in that they indicate a complex population structure across northern Australia. These results should be considered when reviewing the management arrangements for this species.
Resumo:
Purpose: Knowledge management (KM) is important to the knowledge-intensive construction industry. The diversified and changing nature of works in this field warrants us to stocktake, identify changes and map out KM research framework for future exploration. Design/methodology/approach: The study involves three aspects. First, three stages of KM research in construction were distinguished in terms of the time distribution of 217 target publications. Major topics in the stages were extracted for understanding the changes of research emphasis from evolutionary perspective. Second, the past works were summed up in a three-dimensional research framework in terms of management organization, managerial methodology and approach, and managerial objective. Finally, potential research orientations in the future were predicted to expand the existing research framework. Findings: It was found that (1) KM research has significantly blossomed in the last two decades with a great potential; (2) major topics of KM were changing in terms of technology, technique, organization, attribute of knowledge and research objectives; (3) past KM studies centred around management organization, managerial methodology and approach, and managerial objective thus a three-dimensional research framework was proposed; (4) within the research framework, team-level, project-level and firm-level KM were studied to achieve project, organizational and competitive objectives by integrated methodologies of information technology, social technique and KM process tool; and (5) nine potential research orientations were predicted corresponding to the three dimensions. Finally, an expanded research framework was proposed to encourage and guide future research works in this field. Research limitations/implications: The paper only focused on the construction industry. The findings need further exploration in order to discover any possible missing important research works which were not published in English or not included in the time period. Originality/value: The paper formed a systematic framework of KM research in construction and predicted the potential research orientations. It provides much value for the researchers who want to understand the past and the future of global KM research in the construction industry.
Resumo:
In this paper, a new strategy for scaling burners based on "mild combustion" is evolved and adopted to scaling a burner from 3 to a 150 kW burner at a high heat release Late of 5 MW/m(3) Existing scaling methods (constant velocity, constant residence time, and Cole's procedure [Proc. Combust. Inst. 28 (2000) 1297]) are found to be inadequate for mild combustion burners. Constant velocity approach leads to reduced heat release rates at large sizes and constant residence time approach in unacceptable levels of pressure drop across the system. To achieve mild combustion at high heat release rates at all scales, a modified approach with high recirculation is adopted in the present studies. Major geometrical dimensions are scaled as D similar to Q(1/3) with an air injection velocity of similar to 100 m/s (Delta p similar to 600 mm water gauge). Using CFD support, the position of air injection holes is selected to enhance the recirculation rates. The precise role of secondary air is to increase the recirculation rates and burn LIP the residual CO in the downstream. Measurements of temperature and oxidizer concentrations inside 3 kW, 150 kW burner and a jet flame are used to distinguish the combustion process in these burners. The burner can be used for a wide range of fuels from LPG to producer gas as extremes. Up to 8 dB of noise level reduction is observed in comparison to the conventional combustion mode. Exhaust NO emissions below 26 and 3 ppm and temperatures 1710 and 1520 K were measured for LPG and producer gas when the burner is operated at stoichiometry. (c) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime.Activation energy is in the order E-a(n-pentane)>E-a(isopentane)>E-a(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen thatD(n pentane)>D(isopentane)>D(neopentane) and E-a(n-pentane)< E-a(isopentane)< E-a(neopentane). Intermediate scattering function for small wavenumbers obtained from MD follows a single exponential decay for neopentane and isopentane. For n-pentane, a single exponential fit provides a poor fit especially at short times. Cage residence time is largest for n-pentane and lowest for neopentane. For neopentane, the width of the self-part of the dynamic structure factor shows a near monotonic decrease with wavenumber. For n-pentane a minimum is seen near k=0.5 A degrees(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.
Resumo:
The present study was designed to improve the bioavailability of forskolin by the influence of precorneal residence time and dissolution characteristics. Nanosizing is an advanced approach to overcome the issue of poor aqueous solubility of active pharmaceutical ingredients. Forskolin nanocrystals have been successfully manufactured and stabilized by poloxamer 407. These nanocrystals have been characterized in terms of particle size by scanning electron microscopy and dynamic light scattering. By formulating Noveon AA-1 polycarbophil/poloxamer 407 platforms, at specific concentrations, it was possible to obtain a pH and thermoreversible gel with a pH(gel)/T-gel close to eye pH/temperature. The addition of forskolin nanocrystals did not alter the gelation properties of Noveon AA-1 polycarbophil/poloxamer 407 and nanocrystal properties of forskolin. The formulation was stable over a period of 6 months at room temperature. In vitro release experiments indicated that the optimized platform was able to prolong and control forskolin release for more than 5 h. The in vivo studies on dexamethasone-induced glaucomatous rabbits indicated that the intraocular pressure lowering efficacy for nanosuspension/hydrogel systems was 31% and lasted for 12 h, which is significantly better than the effect of traditional eye suspension (18%, 4-6 h). Hence, our investigations successfully prove that the pH and thermoreversible polymeric in situ gel-forming nanosuspension with ability of controlled drug release exhibits a greater potential for glaucoma therapy.
Resumo:
To test the reliability of the radiocarbon method for determining root age, we analyzed fine roots (originating from the years 1985 to 1993) from ingrowth cores with known maximum root age (1 to 6 years old). For this purpose, three Scots pine (Pinus sylvestris L.) stands were selected from boreal forests in Finland. We analyzed root 14C age by the radiocarbon method and compared it with the above-mentioned known maximum fine root age. In general, ages determined by the two methods (root 14C age and ingrowth core root maximum age) were in agreement with each other for roots of small diameter (<0.5mm). By contrast, in most of the samples of fine roots of larger diameter (1.5-2mm), the 14C age of root samples of 1987-89 exceeded the ingrowth core root maximum age by 1-10 years. This shows that these roots had received a large amount of older stored carbon from unknown sources in addition to atmospheric CO2 directly from photosynthesis. We conclude that the 14C signature of fine roots, especially those of larger diameter, may not always be indicative of root age, and that further studies are needed concerning the extent of possible root uptake of older carbon and its residence time in roots. Keywords: fine root age, Pinus sylvestris, radiocarbon, root carbon, ingrowth cores, tree ring
Resumo:
Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 mu mol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 mu mol N m(-2) d(-1) to 910 mu mol N m(-2) d(-1) and from 230 mu mol N m(-2) d(-1) to 320 mu mol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and them estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.
Resumo:
Two dhole (Cuon alpinus) packs were monitored in Mudumalai Sanctuary, southern India, during 1989-93 to look at population dynamics, movement pattern, and foraging strategy and their inter-relationship with the maintenance of social groups. Pack size fluctuated substantially (4-18 and 4-25 in the two packs) owing to dispersal and demographic factors such as females not breeding in a given year. Both packs killed a much higher proportion of chital (Axis axis) and sambar (Cervus unicolor) fawns (< one year old) than their availability in the population. There was no correlation between pack size and body weight of prey killed, while per capita consumption of meat declined with increasing pack size. Home-range area (83.3 km(2) and 54.2 km(2) for the two packs) was not correlated with pack size. Pack movement from one resource patch (consisting of resting sites and aggregations of prey species) to another was not random or based on factors such as inter-patch distance or relative prey densities. There was no difference in mean residence time of the pack across the four resource patches; the pack moved across these in a sequential manner in one direction. We conclude that dholes live in groups not because of any advantages accruing from enhanced group sizes through increased per capita yield of food, but as a consequence of the dispersion of resources.