966 resultados para Public transit.
Resumo:
Transit Capacity Analysis critical to urban system Planning Design, Operation Productive Performance Analysis not so well detailed This study extends TRB’s & Vuchic’s work in this area
Resumo:
Transit oriented developments (TODs) are master planned communities constructed to reduce the dependence on the private car and promote the modes of transport such as public transport, walking and cycling, which are presumed by many transport professionals to be more sustainable. This paper tests this assumption that TOD is a more sustainable form of development than traditional development, with respect to travel demand, by conducting travel surveys for a case study TOD and comparing the travel characteristics of TOD residents with the travel characteristics of residents of Brisbane, Australia who live in non TOD suburbs. The results of a household comparison showed that the Kelvin Grove Urban Village (KGUV) households had slightly smaller household size, lower vehicle and bicycle ownership compared to Brisbane Statistical Division (BSD), Brisbane’s inner north and inner south suburbs. The comparison of average trip characteristics showed that on an average KGUV residents undertook fewer trips on the given travel day (2.6 trips/person) compared to BSD (3.1 trips/person), Brisbane Inner North Suburbs (BINS) (3.6 trips/person) and Brisbane Inner South Suburbs (BISS) (3.5 trips/person) residents. The mode share comparison indicated that KGUV residents used more public transport and made more walk-only trips in comparison to BSD, BINS and BISS residents. Overall, 72.4 percent of KGUV residents used a sustainable mode of transport for their travel on a typical weekday. On the other hand, only 17.4 percent, 22.2 percent and 24.4 percent residents of BSD, BINS and BISS used sustainable modes of transport for this travel. The results of trip length comparison showed that overall KGUV residents have smaller average trip lengths as compared to its counterparts. KGUV & BINS residents used car for travelling farther and used public transport for accessing destinations located closer to their homes. On the contrary, BSD and BISS residents exhibited an opposite trend. These results support the transportation claims of many transport professionals that TODs are more transport efficient and therefore more sustainable in this respect.
Resumo:
TOD: - A fully planned, mixed use development equipped with good quality transit service and infrastructure for walking and cycling Hypothesis: -TOD will help to reduce urban transport congestion Method: -Comparison of a TOD with non TOD urban environments -Residents’ trip characteristics
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Urban transit system performance may be quantified and assessed using transit capacity and productive capacity for planning, design and operational management. Bunker (4) defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures transit task performed over distance. Transit productiveness (p-km/h) captures transit work performed over time. This paper applies productive performance with risk assessment to quantify transit system reliability. Theory is developed to monetize transit segment reliability risk on the basis of demonstration Annual Reliability Event rates by transit facility type, segment productiveness, and unit-event severity. A comparative example of peak hour performance of a transit sub-system containing bus-on-street, busway, and rail components in Brisbane, Australia demonstrates through practical application the importance of valuing reliability. Comparison reveals the highest risk segments to be long, highly productive on street bus segments followed by busway (BRT) segments and then rail segments. A transit reliability risk reduction treatment example demonstrates that benefits can be significant and should be incorporated into project evaluation in addition to those of regular travel time savings, reduced emissions and safety improvements. Reliability can be used to identify high risk components of the transit system and draw comparisons between modes both in planning and operations settings, and value improvement scenarios in a project evaluation setting. The methodology can also be applied to inform daily transit system operational management.
Resumo:
Although transit travel time variability is essential for understanding the deterioration of reliability, optimising transit schedule and route choice; it has not attracted enough attention from the literature. This paper proposes public transport-oriented definitions of travel time variability and explores the distributions of public transport travel time using the Transit Signal Priority data. First, definitions of public transport travel time variability are established by extending the common definitions of variability in the literature and by using route and services data of public transport vehicles. Second, the paper explores the distribution of public transport travel time. A new approach for analysing the distributions involving all transit vehicles as well as vehicles from a specific route is proposed. The Lognormal distribution is revealed as the descriptors for public transport travel time from the same route and service. The methods described in this study could be of interest for both traffic managers and transit operators for planning and managing the transit systems.
Resumo:
This paper investigates public acceptance towards congestion charge in Australia by taking Brisbane as a case study. Public acceptance to congestion charge has often been investigated in the literature. However, few were in the context of an Australian city. This paper fills the gap. A face-to-face survey was conducted to solicit public opinions on the congestion charge, should a congestion charge scheme be implemented in the Brisbane City area. The survey data were analysed to pinpoint important factors relevant to people’s attitudes towards congestion charge and to measure their relationships. Main findings from our analysis are: (1) the residents’ attitudes towards congestion charge differ by genders and by user groups of transport modes; (2) for each of the three groups (i.e., the auto users, the transit riders, and the whole participants), a positive and stable correlation was found between a participant’s attitude towards congestion charge and the effectiveness of congestion charge on reducing traffic congestion. A negative and stable correlation was also found for all three groups between a participant’s attitude towards congestion charge and congestion charge’s negative impact on the attractiveness of working in the city; (3) the auto users tended to be more sceptical about the service capacity of existing transit systems in coping with extra passengers induced by the implementation of congestion charge; and (4) for people with high income, introducing the congestion charge may have no impact on their travelling to the city.
Resumo:
Internationally, transit oriented development (TOD) is characterised by moderate to high density development with diverse land use patterns and well connected street networks centred around high frequency transit stops (bus and rail). Although different TOD typologies have been developed in different contexts, they are based on subjective evaluation criteria derived from the context in which they are built and typically lack a validation measure. Arguably there exist sets of TOD characteristics that perform better in certain contexts, and being able to optimise TOD effectiveness would facilitate planning and supporting policy development. This research utilises data from census collection districts (CCDs) in Brisbane with different sets of TOD attributes measured across six objectively quantified built environmental indicators: net employment density, net residential density, land use diversity, intersection density, cul-de-sac density, and public transport accessibility. Using these measures, a Two Step Cluster Analysis was conducted to identify natural groupings of the CCDs with similar profiles, resulting in four unique TOD clusters: (a) residential TODs, (b) activity centre TODs, (c) potential TODs, and; (d) TOD non-suitability. The typologies are validated by estimating a multinomial logistic regression model in order to understand the mode choice behaviour of 10,013 individuals living in these areas. Results indicate that in comparison to people living in areas classified as residential TODs, people who reside in non-TOD clusters were significantly less likely to use public transport (PT) (1.4 times), and active transport (4 times) compared to the car. People living in areas classified as potential TODs were 1.3 times less likely to use PT, and 2.5 times less likely to use active transport compared to using the car. Only a little difference in mode choice behaviour was evident between people living in areas classified as residential TODs and activity centre TODs. The results suggest that: (a) two types of TODs may be suitable for classification and effect mode choice in Brisbane; (b) TOD typology should be developed based on their TOD profile and performance matrices; (c) both bus stop and train station based TODs are suitable for development in Brisbane.
Resumo:
More evenly spread demand for public transport throughout a day can reduce transit service provider‟s total asset and labour costs. A plausible peak spreading strategy is to increase peak fare and/or to reduce off-peak fare. This paper reviews relevant empirical studies for urban rail systems, as rail transit plays a key role in Australian urban passenger transport and experiences severe peak loading variability. The literature is categorised into four groups: a) passenger opinions on willingness to change time for travel, b) valuations of displacement time using stated preference technique, c) simulations of peak spreading based on trip scheduling models, and: d) real-world cases of peak spreading using differential fare. Policy prescription is advised to take into account impacts of traveller‟s time flexibility and joint effects of mode shifting and peak spreading. Although focusing on urban rail, arguments in this paper are relevant to public transport in general with values to researchers and practitioners.
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
In policy circles, transit oriented development (TOD) is believed to enhance social capital, however empirical evidence of this relationship is lacking. This research compares levels of social capital between TOD vs. non-TOD areas in Brisbane, Australia. Using a Two Step cluster analysis technique, three types of neighbourhood groupings were identified based on net employment density, net residential density, land use diversity, intersection density, and public transport accessibility: TODs, transit adjacent development (TADs) and traditional suburbs. Two dimensions of social capital were measured (trust and reciprocity, connections with neighbours) based on factor analysis of eight items representing elements of social capital. Multivariate regression analyses were conducted to identify links between the distributions of the dimensions of social capital on areas defined as TODs, TADs, and traditional suburbs controlling for socio-demographics and environmental factors. Results show that individuals living in TODs had a significantly higher level of trust and reciprocity and connections with neighbours compared with residents of TADs. It appears that TODs may foster the development of social sustainability.
Resumo:
Public Transport Travel Time Variability (PTTV) is essential for understanding the deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes the key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyzes the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach, using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and analyzing the transit systems.
Resumo:
Residential dissonance signifies a mismatch between an individual’s preferred and actual proximal land use patterns in residential neighbourhoods, whereas residential consonance signifies agreement between actual and preferred proximal land uses. Residential dissonance is a relatively unexplored theme in the literature, yet it acts as a barrier to the development of sustainable transport and land use policy. This research identifies mode choice behaviour of four groups living in transit oriented development (TOD) and non-TOD areas in Brisbane, Australia using panel data from 2675 commuters: TOD consonants, TOD dissonants, non-TOD consonants, and non-TOD dissonants. The research investigates a hypothetical understanding that dissonants adjust their travel attitudes and perceptions according to their surrounding land uses over time. The adjustment process was examined by comparing the commuting mode choice behaviour of dissonants between 2009 and 2011. Six binary logistic regression models were estimated, one for each of the three modes considered (e.g. public transport, active transport, and car) and one for each of the 2009 and 2011 waves. Results indicate that TOD dissonants and non-TOD consonants were less likely to use the public transport and active transport; and more likely to use the car compared with TOD consonants. Non-TOD dissonants use public transport and active transport equally to TOD consonants. The results suggest that commuting mode choice behaviour is largely determined by travel attitudes than built environment factors; however, the latter influence public transport and car use propensity. This research also supports the view that dissonants adjust their attitudes to surrounding land uses, but very slowly. Both place (e.g. TOD development) and people-based (e.g. motivational) policies are needed for an effective travel behavioural shift.