917 resultados para Puberty in lymphoblastic leukemia
Resumo:
The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.
Resumo:
Although biological similarities have been described among monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukaemia (CLL), the relationships between these two conditions are not fully understood, and new epidemiological studies in different populations and different countries continue to be reported. Here, we investigated 167 first-degree relatives from 42 families of patients with non-familial (sporadic) CLL, using four-colour flow cytometry. MBL was found in seven of 167 subjects (4.1%). Monoclonality was detected in all cases either by light-chain restriction or by polymerase chain reaction. Fluourescence in situ hybridization did not show any chromosomal abnormality. The prevalence of MBL according to age was 0 (0/54) in individuals aged less than 40 years, 2.5% (2/81) between 40 and 60 years, and 15.6% (5/32) in individuals over 60 years. The prevalence of MBL cases in individuals over 60 years was similar to that found in familial CLL relatives at the same age group. This suggests that in older first-degree relatives of patients with sporadic CLL, the risk of MBL detection is as high as in older first-degree relatives from CLL families, which could render these individuals belonging to `sporadic CLL families` as susceptible as individuals from `familial CLL` to the development of clinical CLL.
Resumo:
The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.
Resumo:
Studies on children with cancer have suggested that energy expenditure may indeed be greater than predicted for healthy children. Nutritional assessment is important for intervention and for the prevention of complications associated with malnutrition. The present study aimed to describe the nutritional status, energy expenditure, and substrate utilization of children and adolescents with cancer compared to healthy children matched for age, sex, and body mass index. Subjects were evaluated by anthropometry, food intake pattern, and body composition analysis. Energy expenditure and substrate oxidation were measured by indirect calorimetry. Indirect calorimetry data, energy, and macronutrient intake, anthropometry, and body composition parameters showed no significant differences between groups. There was no evidence of increased energy expenditure or of a change in substrate utilization in children with cancer compared to the healthy group. The data regarding usual food consumption showed no significant differences between groups.
Resumo:
Chronic myeloid leukemia (CML) is a rare disease in childhood which is almost exclusively associated with bcr-abl p210 (M-bcr) rearrangements. It has been suggested that co-expression of p 190 and p210 may be a pathway of CML progression in adult patients. We report two cases of pediatric patients with a diagnosis of CML who presented co-expression of the p210 and p190 transcripts during progression to the blastic phase. The present data suggest that p190 may be a secondary event in at least some cases of childhood CML, suggesting an association with progression to a blastic crisis in these patients. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Animal models of autoimmune disease and case reports of patients with these diseases who have been involved in bone marrow transplants have provided important data implicating the haemopoietic stem cell in rheumatic disease pathogenesis. Animal and human examples exist for both cure and transfer of rheumatoid arthritis, systemic lupus erythematosus (SLE) and other organ-specific diseases using allogeneic haemopoietic stem cell transplantation. This would suggest that the stem cell in these diseases is abnormal and could be cured by replacement of a normal stem cell although more in vitro data are required in this area. Given the morbidity and increased mortality in some patients with severe autoimmune diseases and the increasing safety of autologous haemopoietic stem cell transplantation (HSCT), pilot studies have been conducted using HSCT in rheumatic diseases. It is still unclear whether an autologous graft will cure these diseases but significant remissions have been obtained which have provided important data for the design of randomized trials of HSCT versus more conventional therapy. Several trials are now open to accrual under the auspices of the European Bone Marrow Transplant Group/European League Against Rheumatism (EBMT/EULAR) registry. Future clinical and laboratory research will need to document the abnormalities of the stem cell of a rheumatic patient because new therapies based on gene therapy or stem cell differentiation could be apllied to these diseases. With increasing safety of allogeneic HSCT it is not unreasonable to predict cure of some rheumatic diseases in the near future.
Resumo:
OBJECTIVE : To analyze studies that evaluated the role of infections as well as indirect measures of exposure to infection in the risk of childhood leukemia, particularly acute lymphoblastic leukemia. METHODS : A search in Medline, Lilacs, and SciELO scientific publication databases initially using the descriptors “childhood leukemia” and “infection” and later searching for the words “childhood leukemia” and “maternal infection or disease” or “breastfeeding” or “daycare attendance” or “vaccination” resulted in 62 publications that met the following inclusion criteria: subject aged ≤ 15 years; specific analysis of cases diagnosed with acute lymphoblastic leukemia or total leukemia; exposure assessment of mothers’ or infants’ to infections (or proxy of infection), and risk of leukemia. RESULTS : Overall, 23 studies that assessed infections in children support the hypothesis that occurrence of infection during early childhood reduces the risk of leukemia, but there are disagreements within and between studies. The evaluation of exposure to infection by indirect measures showed evidence of reduced risk of leukemia associated mainly with daycare attendance. More than 50.0% of the 16 studies that assessed maternal exposure to infection observed increased risk of leukemia associated with episodes of influenza, pneumonia, chickenpox, herpes zoster, lower genital tract infection, skin disease, sexually transmitted diseases, Epstein-Barr virus, and Helicobacter pylori . CONCLUSIONS : Although no specific infectious agent has been identified, scientific evidence suggests that exposure to infections has some effect on childhood leukemia etiology.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Summary: Intestinal pseudo-obstruction is a rare complication resulting from a variety of disorders. Symptoms include abdominal pain, nausea, vomiting, diarrhea, constipation, and malnutrition. Vincristine-related pseudo-obstruction has been reported in the literature, but its description in children and recommendations for management are lacking. A review of the literature revealed 21 reported pediatric cases of vincristine-related pseudo-obstruction. Most have, however, been attributed to a drug interaction with itraconazole, accidental vincristine overdose, or liver failure. Potential genetic causes are rarely addressed. We present here 5 cases of pseudo-obstruction related to vincristine without any identifiable predisposing factors, and a suggested algorithm for management
Resumo:
C receptor type 1 (CR1, CD35) is present in a soluble form in plasma (sCR1). Soluble CR1 was measured with a specific ELISA assay in normal individuals and in patients with different diseases. The mean serum concentration of sCR1 in 31 normal donors was 31.4 +/- 7.8 ng/ml, and was identical in plasma. An increase in sCR1 was observed in 36 patients with end-stage renal failure on dialysis (54.8 +/- 11.7 ng/ml, p < 0.0001), and in 22 patients with liver cirrhosis (158.3 +/- 49.9 ng/ml, p < 0.0001). The mean sCR1 levels dropped from 181 +/- 62.7 to 52.1 +/- 24.0 ng/ml (p < 0.001) in nine patients who underwent liver transplantation, and was 33.5 +/- 7.3 in 10 patients with functioning renal grafts, indicating that the increase in sCR1 was reversible. Soluble CR1 was elevated in some hematologic malignancies (> 47 ng/ml), which included B cell lymphoma (12/19 patients), Hodgkin's lymphoma (4/4), and chronic myeloproliferative syndromes (4/5). By contrast, no increase was observed in acute myeloid or lymphoblastic leukemia (10) or myeloma (5). In two patients with chronic myeloproliferative syndromes, sCR1 decreased rapidly after chemotherapy. The mean concentration of sCR1 was not significantly modified in 181 HIV-infected patients at various stages of the disease (34.8 +/- 14.4 ng/ml), and in 13 patients with active SLE (38.3 +/- 19.6 ng/ml), although in both groups the number of CR1 was diminished on E. There was a weak but significant correlation between sCR1 and CR1 per E in HIV infection and SLE (r = 0.39, p < 0.0001, and r = 0.60, p < 0.03 respectively). In vitro, monocytes, lymphocytes, and neutrophils were found to release sCR1 into culture supernatants. In vivo, sCR1 was detected in the serum of SCID mice populated with human peripheral blood leukocytes. The sCR1 levels correlated with those of human IgG (r = 0.97, p < 0.0001), suggesting synthesis of sCR1 by the transferred lymphocytes. The mechanisms underlining the increased levels of sCR1 and its biologic consequences remain to be defined.
Resumo:
In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.
Resumo:
Hematogones are normal B-lymphoid precursors that multiply in the bone marrow of small children and of adults with ferropenic anaemia, neuroblastoma or idiopathic thrombocytopenic purpura. They are not normally found in peripheral blood, and the immunophenotype is virtually indistinguishable from that of B lymphoblasts. We discuss the case of a 3-month infant with an active cytomegalovirus infection, with hepatitis and pancytopenia associated with 13% hematogones in the bone marrow
Resumo:
CONTEXTE: Les sélectines sont une famille de trois protéines qui règlent la capture et le roulement des leucocytes et qui initient la cascade d'adhésion. Elles contrôlent également la migration des leucocytes en réponse à un stimulus physiologique ou inflammatoire pour atteindre un organe cible. Le rôle des sélectines et des leurs ligands est bien connu dans l'adhésion des leucocytes normaux à l'endothélium; en revanche, la nature des ligands des sélectines exprimés par les cellules leucémiques et le myélome multiple est peu connue. La récente découverte que la E- et la P-sélectine sont exprimées par les cellules endothéliales et du stroma de la moelle osseuse, nous a incité à examiner leur rôle dans les interactions des cellules malignes avec leur environnement médullaire. RÉSULTATS: Les analyses ont été conduites sur les cellules du sang ou de la moelle osseuse prélevées à des patients atteints de leucémie aiguë ou de myélome multiple et sur des lignées cellulaires. Les ligands des sélectines qui ont été identifiés sur les blastes leucémiques ou les plasmocytes, sont « P-selectin glycoprotein ligand-1 » (PSGL-1), CD44, CD43 et l'endoglycan (EGC), ainsi que les saccharides fucosylés sLex et CLA. Nous avons vérifié dans des expériences d'adhésion cellulaire effectuées dans des conditions de flux que ces ligands sont fonctionnels, étant porteurs des sucres mentionnés, et qu'ils sont capables de supporter le roulement cellulaire dépendant des sélectines. De plus, nous avons montré que la liaison de ces ligands génère des signaux intracellulaires favorisant la prolifération et la survie des cellules de myélome. CONCLUSION. Les données présentées ici montrent que la E- et la P- sélectine du microenvironnement médullaire interagissent avec les cellules leucémiques et de myélome multiple, et que ces interactions activent des voies de signalisation contrôlant la prolifération et la survie cellulaire. Ces effets protecteurs sont impliqués dans la persistance de clones cellulaires malins résistant aux traitements et peuvent conduire à la récidive de la maladie. L'inhibition de ces interactions pourrait fournir de nouvelles options thérapeutiques pour le traitement de ces maladies de mauvais pronostic. - BACKGROUND: Selectins are a family of glycoproteins involved in the first steps of the adhesion cascade, tethering and rolling, during which leukocytes sense tissue specific signals and commit the cells to enter in a particular organ or inflammation site. While the role of selectins and their ligands is well established in supporting normal leukocyte adhesion to vascular endothelium, our knowledge of selectin ligands in two hematological malignancies, acute leukemia and multiple myeloma, is incomplete. The recent discovery that E- and P- selectin are also expressed on bone marrow (BM) endothelial and stromal cells, prompted us to investigate a potential role in selectin-mediated interaction of malignant cells with its protective BM microenvironment. RESULTS. Using cells obtained from blood or BM of patients affected by acute myeloid or lymphoblastic leukemia, or multiple myeloma, as well as cell lines, we characterized the expression of selectin ligands on blasts and plasma cells and identified P-selectin glycoprotein ligand-1 (PSGL-1), CD44, CD43 and endoglycan (EGC), as well as sLex/CLA determinants. Rolling assays under flow conditions allowed us to verify that these ligands are functional, i.e. correctly glycosylated and able to support selectin-mediated rolling. Moreover, we demonstrated that these ligands trigger proliferation and pro-survival signals upon engagement on myeloma cells. CONCLUSIONS. Data presented here demonstrate that E- and P-selectin in the BM microenvironment interact with leukemia and myeloma cells, and suggest that they have an impact on proliferation and survival of malignant plasma cells. These protective effects may induce drug resistance in malignant clones, leading to disease relapse. Interfering with these interactions could provide new therapeutic options. - Le corps humain dépend du système immunitaire pour sa protection face aux agressions, notamment des bactéries ou des virus, ou face à une dysfonction de l'organisme. Ce système est composé de plusieurs types cellulaires, regroupés sous le nom de leucocytes, qui participent à son fonctionnement. Ces cellules se développent à partir d'une cellule souche hématopo'iétique commune qui réside dans la moelle osseuse. Comme c'est le cas dans les autres tissus, les cellules du système immunitaire peuvent aussi développer des cancers, appelés tumeurs hématopoïétiques ou tumeurs du sang. Bien que ces maladies puissent être traitées avec succès grâce à de fortes doses de chimiothérapies ou à d'autres moyens comme les greffes, les patients connaissent un fort taux de rechute. La raison de ces récidives est la survie d'une partie des cellules malignes dans la moelle osseuse, où elles reçoivent une protection au traitement par le biais de l'interaction avec d'autres cellules. Les sélectines (E-, P- et L-sélectine) régulent l'interaction des leucocytes avec l'endothélium (la paroi des vaisseaux sanguins), d'autres leucocytes et les plaquettes ; ces interactions surviennent quand les leucocytes atteignent un site d'inflammation ou un organe cible. Dans la moelle osseuse, la E- et la P-sélectine se trouvent sur les cellules de l'endothélium et sur les macrophages, qui sont d'autres leucocytes faisant partie du stroma de la moelle. Elles pourraient être impliquées dans la protection des cellules cancéreuses évoquée plus haut. Les molécules d'adhésion avec lesquelles les sélectines s'associent, autrement dit les ligands des sélectines, sont des glycoprotéines. Ces protéines ont besoin de sucres spécifiques pour acquérir une telle capacité d'adhésion. Dans le cadre de cette thèse, nous avons étudié deux types de cellules extraites du sang et de la moelle osseuse des patients atteints d'une leucémie aiguë (les blastes) ou de myélome multiple (les plasmocytes), et leur capacité à se lier aux sélectines. Nous avons démontré une interaction entre ces cellules malignes et la E- et/ou la P-sélectine, à condition que les ligands soient correctement décorés. De plus, lors que les plasmocytes se lient aux sélectines, une cascade de signaux à l'intérieur des cellules stimule leur prolifération et leur survie. L'ensemble de ces résultats permet l'identification de nouvelles cibles thérapeutiques potentielles de ces hémopathies de mauvais pronostic.
Resumo:
Approximately 30% of patients with follicular lymphoma (FL) transform to a more aggressive malignancy, most commonly diffuse large B cell lymphoma. Rarely, FL transformation results in clinical findings, histology, and immunophenotype reminiscent of B-lymphoblastic leukemia/lymphoma. We report the largest series to date with detailed analysis of 7 such patients. Lymphoblastic transformation occurred on average 2 years after initial diagnosis of FL. Five patients had prior intensive chemotherapy. Two patients developed mature high-grade lymphoma, followed by the lymphoblastic transformation. FL had BCL2 gene rearrangement in 4 of 5 cases. High-grade transformation was accompanied by MYC gene rearrangement (5 of 5). Transformation was characterized by expression of TdT, loss of Bcl6, variable loss of immunoglobulin light chain, and persistence of Pax-5, Bcl2, and CD10. Whole-exome sequencing in 1 case revealed presence of several actionable mutations (CD79B, CCND3, CDK12). FL, aggressive mature B cell lymphoma, and lymphoblastic transformation were clonally related in 6 evaluable cases. After transformation, survival ranged from 1 to 14 months. Four patients died of disease, 2 were in remission after stem cell transplant, and 1 was alive with disease.
Resumo:
Background. Sevelamer is a phosphate-binder used effectively for the treatment of hyperphosphatemia in patients treated with dialysis. Objectives. To describe the safety of sevelamer in children with hyperphosphatemia secondary to tumor lysis syndrome and the serum phosphate concentrations observed following its administration. Procedure. A retrospective chart review of all children with leukemia/lymphoma diagnosed between November 2002 and April 2004 who received sevelamer during their initial admission was conducted. We monitored the effects of sevelamer on serum phosphate concentration, calcium/phosphate product and renal function at hours 24, 48, and 72 from sevelamer initiation. Results. Thirteen patients received sevelamer during the Study period. Their median age was 13 years (range 2.7-17.9) and eight were boys. Nine children had acute lymphoblastic leukemia, one had acute myeloid leukemia and 3 had non-Hodgkin's lymphoma. The most frequently used dose of sevelamer was 400 mg orally twice daily. The median duration of sevelamer therapy was 2 days (range 1 -7). Two children were excluded from the efficacy analysis due to concurrent use of dialysis. Mean serum phosphate levels decreased after sevelamer administration, in eleven patients, from a baseline 2.2 mmol/L +/- 0.4 (95% Cl, 1.7-3.1) to 1.1 mmol/L +/- 0.2 at hour 72 (95%Cl, 0.6-1.5). The only toxicity attributed to sevelamer was mild vomiting in three patients. Conclusions. Sevelamer appears to be effective and tolerable for the treatment of hyperphosphatemia associated with tumor lysis syndrome.