993 resultados para Proteínas proto-oncogênicas c-myc
Resumo:
Objective: MicroRNAs (miRNAs) are small noncoding regulatory RNAs (19-25 nucleotides) that play a major role in regulation of gene expression. They are responsible for the control of fundamental cellular processes that has been reported to be involved in human tumorigenesis. The characterization of miRNA profiles in human tumors is crucial for the understanding of carcinogenesis processes, finding of new tumor markers, and discovering of specific targets for the development of innovative therapies. The aim of this study is to find miRNAs involved in prostate cancer progression comparing the profile of miRNA expressed by localized high grade carcinoma and bone metastasis. Material and methods: Two groups of tumors where submitted to analyses. The first is characterized by 18 patients who underwent radical prostatectomy for treatment of localized high grade prostate carcinoma (PC) with mean Gleason score 8.6, all staged pT3. The second group is composed of 4 patients with metastatic, androgen-independent prostate carcinoma, and 2 PC cell lines. LNCaP derived from a metastatic PC to a lymph node, and another derived from an obstructive, androgen-independent PC (PcBRA1). Expression analysis of 14 miRNAs was carried out using quantitative RT-PCR. Results: miR-let7c, miR-100, and miR-218 were significantly overexpressed by all localized high GS, pT3 PC in comparison with metastatic carcinoma. (35.065 vs. 0.996 P < 0.001), (55.550 vs. 8.314, P = 0.010), and (33.549 vs. 2.748, P = 0.001), respectively. Conclusion: We hypothesize that miR-let7c, miR-100, and miR-218 may be involved in the process of metastasization of PC, and their role as controllers of the expression of RAS, c-myc, Laminin 5 beta 3, THAP2, SMARCA5, and BAZ2A should be matter of additional studies. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Folic acid (FA) supplementation during carcinogenesis is controversial. Considering the impact of liver cancer as a public health problem and mandatory FA fortification in several countries, the role of FA supplementation in hepatocarcinogenesis should be elucidated. We evaluated FA supplementation during early hepatocarcinogenesis. Rats received daily 0.08 mg (FA8 group) or 0.16 mg (FA16 group) of FA/100 g body weight or water (CO group, controls). After a 2-week treatment, animals were subjected to the ""resistant hepatocyte"" model of hepatocarcinogenesis (initiation with diethylnitrosamine, selection/promotion with 2-acetylaminofluorene and partial hepatectomy) and euthanized after 8 weeks of treatment. Compared to the CO group, the FA16 group presented: reduced (p < 0.05) number of persistent and increased (p < 0.05) number of remodeling glutathione S-transferase (GST-P) positive preneoplastic lesions (PNL); reduced (p < 0.05) cell proliferation in persistent GST-P positive PNL; decreased (p < 0.05) hepatic DNA damage; and a tendency (p < 0.10) for decreased c-myc expression in microdissected PNL. Regarding all these parameters, no differences (p > 0.05) were observed between CO and FA8 groups. FA-treated groups presented increased hepatic levels of S-adenosylmethionine but only FA16 group presented increased S-adenosylmethionine/S-adenosylhomocysteine ratio. No differences (p > 0.05) were observed between experimental groups regarding apoptosis in persistent and remodeling GST-P positive PNL, and global DNA methylation pattern in microdissected PNL. Altogether, the FA16 group, but not the FA8 group, presented chemopreventive activity. Reversion of PNL phenotype and inhibition of DNA damage and of c-myc expression represent relevant FA cellular and molecular effects.
Resumo:
Objective: To elucidate the potential mechanisms involved in the physiopathology of endometriosis. We analyzed the differential gene expression profiles of eutopic and ectopic tissues from women with endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Seventeen patients in whom endometriosis was diagnosed and 11 healthy fertile women. Intervention(s): Endometrial biopsy specimens from the endometrium of healthy women without endometriosis and from the eutopic and ectopic endometrium tissues of patients with endometriosis were obtained in the early proliferative phase of the menstrual cycle. Main Outcome Measure(s): Six paired samples of eutopic and ectopic tissue were analyzed by subtractive hybridization. To evaluate the expression of genes found by rapid subtraction hybridization methods, we measured CTGF, SPARC, MYC, MMP and IGFBP1 genes by real-time polymerase chain reaction in all samples. Result(s): This study identified 291 deregulated genes in the endometriotic lesions. Significant expression differences were obtained for SPARC, MYC, and IGFBP1 in the peritoneal lesions and for MMP3 in the ovarian endometriomas. Additionally, significant differences were obtained for SPARC and IGFBP1 between the peritoneal and ovarian lesions. No significant differences were found for the studied genes between the control and the eutopic endometrium. Conclusion(s): This study identified 291 genes with differential expression in endometriotic lesions. The deregulation of the SPARC, MYC, MMP3, and IGFBP1 genes may be responsible for the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril(R) 2010;93:1750-73. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Aims: Epstein-Barr virus (EBV) and its associated proteins may be protective against the occurrence of apoptosis that would normally inhibit cancer development and progression. Alternatively, the viral infection may cause altered or mutated expression of oncogenes or tumour suppressor genes that are necessary for tumour development. an action that may also involve apoptosis, In this study, a relationship was sought between occurrence of EBV infection, expression of apoptosis-associated proteins (tumour suppressor gene p53 and oncogenes c-myc and bcl-2) and levels of cell death (apoptosis or necrosis) in 119 cases of gastric carcinoma. Methods and results: The EBV status of the gastric carcinomas (using the EBV-encoded small RNA I (EBER-1) and in-situ hybridization), stage and grade of tumour and sex of patients were compared for bcl-2, p53 and c-myc expression patterns. EBER-1 was detected in approximately 20% of cases studied. There was no significant correlation between levels of cell death in the tumour tissue and EBV status. In the protein analyses, development and progression of gastric carcinoma, with or without EBV infection. was independent of bcl-2 expression. However, in gastric cancers with EBV infection, p53 overexpression was inhibited and c-myc expression was increased in early stage cancers, in comparison with decreased c-myc expression in late stage cancers. Conclusions: The p53 and c-myc expression patterns indicate that EBV-infected gastric carcinomas are less likely to have a natural regression via apoptosis at an early stage and explain, in part, the resistance to treatment of late stage of gastric cancers.
Resumo:
The initial step in viral infection is the attachment of the virus to the host cell via an interaction with its receptor. We have previously shown that a receptor for human papillomavirus is the alpha6 integrin. The alpha6 integrin is involved in the attachment of epithelial cells with the basement membrane, but recent evidence suggests that ligation of many integrins results in intracellular signaling events that influence cell proliferation. sere we present evidence that exposure of A431 human epithelial cells to human papillomavirus type 6b L1 virus-like particles (VLPs) results in a dose-dependent increase in cell proliferation, as measured by bromodeoxyuridine incorporation. This proliferation is Lost if VLPs are first denatured or incubated with a monoclonal antibody against L1 protein. The MEK1 inhibitor PB98059 inhibits the VLP-mediated increase in fell proliferation, suggesting involvement of the Ras-MAP kinase pathway, Indeed, VLP binding results in rapid phosphorylation of the beta4 integrin upon tyrosine residues and subsequent recruitment of the adapter protein She to beta4, Within 30 min, the activation of Ras, Raf, and Erk2 was observed. Finally, the upregulation of c-myc mRNA was observed at 60 min, These data indicate that human papillomavirus type 6b is able to signal cells via the Ras-MAP kinase pathway to induce cell proliferation. We hypothesize that such a mechanism would allow papillomaviruses to infect hosts more successfully by increasing the potential pool of cells they are able to infect via the initiation of proliferation in resting keratinocyte stem and suprabasal cells.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Resumo:
RESUMO: A reprogramação celular permite que uma célula somática seja reprogramada para outra célula diferente através da expressão forçada de factores de transcrição (FTs) específicos de determinada linhagem celular, e constitui uma área de investigação emergente nos últimos anos. As células somáticas podem ser experimentalmente manipuladas de modo a obter células estaminais pluripotentes induzidas (CEPi), ou convertidas directamente noutro tipo de célula somática. Estas descobertas inovadoras oferecem oportunidades promissoras para o desenvolvimento de novas terapias de substituição celular e modelos de doença, funcionando também como ferramentas valiosas para o estudo dos mecanismos moleculares que estabelecem a identidade celular e regulam os processos de desenvolvimento. Existem várias doenças degenerativas hereditárias e adquiridas da retina que causam deficiência visual devido a uma disfunção no tecido de suporte da retina, o epitélio pigmentar da retina (EPR). Uma destas doenças é a Coroideremia (CHM), uma doença hereditária monogénica ligada ao cromossoma X causada por mutações que implicam a perda de função duma proteína com funções importantes na regulação do tráfico intracelular. A CHM é caracterizada pela degenerescência progressiva do EPR, assim como dos foto-receptores e da coróide. Resultados experimentais sugerem que o EPR desempenha um papel importante na patogénese da CHM, o que parece indicar uma possível vantagem terapêutica na substituição do EPR nos doentes com CHM. Por outro lado, existe uma lacuna em termos de modelos in vitro de EPR para estudar a CHM, o que pode explicar o ainda desconhecimento dos mecanismos moleculares que explicam a patogénese desta doença. Assim, este trabalho focou-se principalmente na exploração das potencialidades das técnicas de reprogramação celular no contexto das doenças de degenerescência da retina, em particular no caso da CHM. Células de murganho de estirpe selvagem, bem como células derivadas de um ratinho modelo de knockout condicional de Chm, foram convertidos com sucesso em CEPi recorrendo a um sistema lentiviral induzido que permite a expressão forçada dos 4 factores clássicos de reprogramação, a saber Oct4, Sox2, Klf4 e c-Myc. Estas células mostraram ter equivalência morfológica, molecular e funcional a células estaminais embrionárias (CES). As CEPi obtidas foram seguidamente submetidas a protocolos de diferenciação com o objectivo final de obter células do EPR. Os resultados promissores obtidos revelam a possibilidade de gerar um valioso modelo de EPR-CHM para estudos in vitro. Em alternativa, a conversão directa de linhagens partindo de fibroblastos para obter células do EPR foi também abordada. Uma vasta gama de ferramentas moleculares foi gerada de modo a implementar uma estratégia mediada por FTs-chave, seleccionados devido ao seu papel fundamental no desenvolvimento embrionário e especificação do EPR. Conjuntos de 10 ou menos FTs foram usados para transduzir fibroblastos, que adquiriram morfologia pigmentada e expressão de alguns marcadores específicos do EPR. Adicionalmente, observou-se a activação de regiões promotoras de genes específicos de EPR, indicando que a identidade transcricional das células foi alterada no sentido pretendido. Em conclusão, avanços significativos foram atingidos no sentido da implementação de tecnologias de reprogramação celular já estabelecidas, bem como na concepção de novas estratégias inovadoras. Metodologias de reprogramação, quer para pluripotência, quer via conversão directa, foram aplicadas com o objectivo final de gerar células do EPR. O trabalho aqui descrito abre novos caminhos para o estabelecimento de terapias de substituição celular e, de uma maneira mais directa, levanta a possibilidade de modelar doenças degenerativas da retina com disfunção do EPR numa placa de petri, em particular no caso da CHM.---------------ABSTRACT: Cellular reprogramming is an emerging research field in which a somatic cell is reprogrammed into a different cell type by forcing the expression of lineage-specific transcription factors (TFs). Cellular identities can be manipulated using experimental techniques with the attainment of pluripotency properties and the generation of induced Pluripotent Stem (iPS) cells, or the direct conversion of one somatic cell into another somatic cell type. These pioneering discoveries offer new unprecedented opportunities for the establishment of novel cell-based therapies and disease models, as well as serving as valuable tools for the study of molecular mechanisms governing cell fate establishment and developmental processes. Several retinal degenerative disorders, inherited and acquired, lead to visual impairment due to an underlying dysfunction of the support cells of the retina, the retinal pigment epithelium (RPE). Choroideremia (CHM), an X-linked monogenic disease caused by a loss of function mutation in a key regulator of intracellular trafficking, is characterized by a progressive degeneration of the RPE and other components of the retina, such as the photoreceptors and the choroid. Evidence suggest that RPE plays an important role in CHM pathogenesis, thus implying that regenerative approaches aiming at rescuing RPE function may be of great benefit for CHM patients. Additionally, lack of appropriate in vitro models has contributed to the still poorly-characterized molecular events in the base of CHM degenerative process. Therefore, the main focus of this work was to explore the potential applications of cellular reprogramming technology in the context of RPE-related retinal degenerations. The generation of mouse iPS cells was established and optimized using an inducible lentiviral system to force the expression of the classic set of TFs, namely Oct4, Sox2, Klf4 and c-Myc. Wild-type cells, as well as cells derived from a conditional knockout (KO) mouse model of Chm, were successfully converted into a pluripotent state, that displayed morphology, molecular and functional equivalence to Embryonic Stem (ES) cells. Generated iPS cells were then subjected to differentiation protocols towards the attainment of a RPE cell fate, with promising results highlighting the possibility of generating a valuable Chm-RPE in vitro model. In alternative, direct lineage conversion of fibroblasts into RPE-like cells was also tackled. A TF-mediated approach was implemented after the generation of a panoply of molecular tools needed for such studies. After transduction with pools of 10 or less TFs, selected for their key role on RPE developmental process and specification, fibroblasts acquired a pigmented morphology and expression of some RPE-specific markers. Additionally, promoter regions of RPE-specific genes were activated indicating that the transcriptional identity of the cells was being altered into the pursued cell fate. In conclusion, highly significant progress was made towards the implementation of already established cellular reprogramming technologies, as well as the designing of new innovative ones. Reprogramming into pluripotency and lineage conversion methodologies were applied to ultimately generate RPE cells. These studies open new avenues for the establishment of cell replacement therapies and, more straightforwardly,raise the possibility of modelling retinal degenerations with underlying RPE defects in apetri dish, particularly CHM.
Resumo:
DNA may fold into a diversity of structures and topologies such as duplexes and triplexes. Some specific guanine-rich DNA sequences may even fold into a higher order structures denominated guanine G-quadruplexes (G4). These G-quadruplex forming sequences have shown biological interest since were found in telomeres and in promoter region of oncogenes. Thus, these G4 forming sequences have been explored as therapeutic targets for cancer therapy, since G4 formation was demonstrated to inhibit RNA-polymerase and telomerase activity. However, the G4 structures are transient and are only formed under specific conditions. Hence the main objective of this work is to develop new G4-specific ligands which may potentially find applications in the therapeutic area. Several potential G4-binding ligands were synthesized and characterized. The synthesis of these compounds consisted on a procedure based on van Leusen chemistry and a cross-coupling reaction through C-H activation, affording phenanthroline compounds (Phen-1, 50%; Phen-2, 20%), phenyl (Iso-1, 61%; Iso-2, 21%; Ter-1, 85%; Ter-2, 35%), and quinolyl (Quin-1, 85%; Quin-2, 45%) compounds. Screening assays for selecting the potential G4 compounds were performed by FRET-melting, G4-FID, CD-melting and DSF. Qualitative biophysical studies were performed by fluorescence and CD spectroscopy. Two high-specific G-quadruplex ligands, Phen-1 and Phen-2, were found to effectively bind telomeric and c-myc G4 structures. Phen-1 was found to stabilize parallel telomeric 22AG and c-myc sequence by 4.1 and 4.3 ˚C, respectively. Phen-2 also displayed high affinity towards 22AG (
Resumo:
Exosomes are small membrane vesicles secreted by most cell types, either normal or malignant and are found in most body fluids such as saliva, plasma and breast milk. In the past decade, the interest in these vesicles has been growing more and more since it was found that besides their beneficial functions such as the removal of cellular debris and unnecessary proteins during cell maturation process, they can also interact with other cells and transfer information between them, thus helping diseases like cancer to progress. The present work intended to use gold nanoparticles as vehicles for gene silencing in an attempt to reduce the tumor-derived exosome secretion, regulated by Rab27a protein, and also aimed to compare the exosome secretion between two breast cell lines, MCF7 and MDA. Changes in RAB27A gene expression were measured by Real-time Quantitative PCR and it was revealed a decreased in RAB27A gene expression, as expected. Exosomes were isolated and purified by two different methods, ultracentrifugation and the commercial kit ExoQuick™ Solution, and further characterized using Western Blot analysis. ExoQuick™ Solution was proven to be the most efficient method for exosome isolation and it was revealed that MDA cells secrete more exosomes. Furthermore, the isolated MCF7-derived exosomes were placed together with a normal bronchial/tracheal epithelial cell line (BTEC) for an additional assay, which aimed to observe the uptake of exosomes by other cells and the exosomes’ capability of promoting cell-cell communication. This observation was made based on alterations in the expression levels of c-Myc and miR-21 genes and the fact that they both have an increased expression in BTEC cells incubated with tumor-derived exosomes when compared to control cells (without incubation with the exosomes) lead us to the conclusion that the exosome uptake and exchange of information between the exosomes and the normal cells did occurred.
Resumo:
In this paper a number of anticancer agents of natural origin will be presented. Hydroxycamtothecin (HCPT) was found to produce a strong inhibitory action on a variety of animal tumors. It is also effective for treatment of patients with gastric carcinoma, liver carcinoma, tumor of head and neck or leukemia. Pharmacologic studies showed that it could depress S phase of tumor cells significantly and cause formation of cellular chromatid breaks. By means of alkaline elution and nick translation methods it has been proved that HCPT induced DNA singlo strand breaks remarkably. Homoharringyonine (hhrt) was shown to be effective against acute leukemia. Recent experiments in tumor-bearing mice inidcated that (HHRT) could diminish tumor metastasis. Using molecular hybridization technique it was demonstrated that (HHRT) decreased the content of c-myc RNA in the cytoplasm but not in the nuclei. Lycobetaine (LBT) poddrddrf dytnh inhibitory effects on a number of ascites tumors. In clinical trials it was against ovarian and gastric carcinomas. It is able to intercalate into DNA. Oxalysine (OXL) is a new antibiotic and shown to be effective against tumor metastatis. When used in combination with 5-FU, its anticancer action could be enhanced. Other natural compounds such as indirubin, ß-elemene, irisquinone, oridonine, norcantharidin and PSP have been also found to possess antitumor action.
Resumo:
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
Resumo:
Burkitt lymphoma is one of the most aggressive tumors affecting humans. Together with the characteristic chromosomal translocation that constitutively activates the c-Myc oncogene, alterations in cellular tumor suppressor pathways are additionally required in order to allow the cells to overcome anti-oncogenic barriers and proliferate in an uncontrolled manner. The INK4a/ARF locus on chromosome 9p21 is considered a safeguard locus since it encodes the two important tumor suppressor proteins, p14 (ARF) and p16 (INK4a) . By regulating the p53 and Rb pathways p14 (ARF) and p16 (INK4a) respectively act as pro-apoptotic and cell cycle inhibitor proteins. The importance of the INK4a/ARF locus has been well documented in several human tumors as well as in Burkitt lymphoma. Although the mechanisms responsible for the transcriptional regulation of the INK4a/ARF locus have been thoroughly characterized, less is known about its posttranscriptional control. In this study we found that p16 (INK4a) and p14 (Arf) are concurrently inactivated in a panel of BL cell lines. We demonstrate that along with the epigenetic silencing of the p16INK4a gene, the complete inactivation of the locus is achieved by the improper turnover of INK4/ARF proteins by the ubiquitin-proteasome system (UPS), as the proteasome inhibitor MG-132 blocks p14 (ARF) degradation and induces a dramatic stabilization of the p16 (INK4a ) protein. We establish that the simultaneous deregulation of both DNA methylation patterns and the ubiquitin-dependent proteolysis system is required to completely inactive the INK4/ARF locus, opening new prospects for the understanding and treatment of Burkitt lymphoma.
Resumo:
To date, no effective method exists that predicts the response to preoperative chemoradiation (CRT) in locally advanced rectal cancer (LARC). Nevertheless, identification of patients who have a higher likelihood of responding to preoperative CRT could be crucial in decreasing treatment morbidity and avoiding expensive and time-consuming treatments. The aim of this study was to identify signatures or molecular markers related to response to pre-operative CRT in LARC. We analyzed the gene expression profiles of 26 pre-treatment biopsies of LARC (10 responders and 16 non-responders) without metastasis using Human WG CodeLink microarray platform. Two hundred and fifty seven genes were differentially over-expressed in the responder patient subgroup. Ingenuity Pathway Analysis revealed a significant ratio of differentially expressed genes related to cancer, cellular growth and proliferation pathways, and c-Myc network. We demonstrated that high Gng4, c-Myc, Pola1, and Rrm1 mRNA expression levels was a significant prognostic factor for response to treatment in LARC patients (p<0.05). Using this gene set, we were able to establish a new model for predicting the response to CRT in rectal cancer with a sensitivity of 60% and 100% specificity. Our results reflect the value of gene expression profiling to gain insight about the molecular pathways involved in the response to treatment of LARC patients. These findings could be clinically relevant and support the use of mRNA levels when aiming to identify patients who respond to CRT therapy.
Resumo:
Introduction: Glioblastoma (WHO Grade IV glioma) is the most frequent and most¦malignant primary tumor of the brain. With a mean survival of 15 months despite¦multidisciplinary management combining surgery, chemo- and radiotherapy, the prognosis¦is poor. Different studies measured a down-regulation of Wnt Inhibitory Factor 1 (WIF1)¦expression in a majority of gliobastoma due to genetic and epigenetic regulation. Recently,¦a focus on chromosome 12 identified WIF1 as a potential tumor suppressor gene. In¦previous results, transfected glioblastoma cells with ectopic expression of WIF1 had a¦decreased growth rate and adopted a senescence-like phenotype. In this report, we first¦investigated the effect of WIF1 re-expression in glioblastoma cell lines to see if Wnt¦inhibition by WIF1 can lead to senescence. To look further, we assessed p21 and c-Myc¦expression. p21 has a key role in senescence onset and is directly inhibited by c-Myc,¦itself a target of Wnt-pathway. We thus looked if a variation of expression of these genes is¦triggered by WIF1 activity. Finally, as autophagy is thought to play a role in senescence¦onset, we analyzed the expression of different autophagy genes. We therefore looked for¦an association between autophagy activity and senescent phenotype in WIF1-¦overexpressing cell lines.¦Methods: WIF1-overexpressing clones were selected after transfection of stable¦glioblastoma cell lines. Analysis were made through quantitative Polymerase Chain¦Reaction (qPCR), Fluorescence-activated Cell Sorting (FACS) and histochemistry.¦IGFBP7 and ALDH1A3 have been selected to reflect senescence. ATG5, ATG7 and ULK3¦have been selected to reflect autophagy activity.¦Results: Using FACS analysis, we found a higher percentage of large cells with increased¦granularity amongst WIF1-overexpressing cell lines, which are characteristics of¦senescence. In addition, histochemistry showed a higher percentage of multi-nucleated,¦beta-galactosidase positive cells in the same cell lines. An increased expression of genes¦associated with senescence was found as well. All characteristics were correlated with¦levels of WIF1 expression. We did not find any association between p21 and WIF1¦expression. No correlation between WIF1 and c-Myc expression was noticed either. In one¦of the two cell lines analyzed, the expression of autophagy genes showed some¦correlation with expression of WIF1 and expression of genes associated with senescence.¦Discussion: After investigations and characterizations on multiple levels, we have¦evidence for a senescence phenotype upon WIF1-overexpressing cell lines. This gives a¦role to Wnt pathway in the tumorigenicity of glioblastoma. Further experiments are¦required to investigate how Wnt inhibition leads to senescence. The role of autophagy in¦our senescent cells is here still unclear. Some correlations can be found, letting us think¦that there is indeed some involvement of autophagy. However, it is yet to soon to explain¦this relationship. Further experiments are required again to confirm the preliminary results¦and analyze the variations of autophagy activity within time.
Resumo:
Induced pluripotent stem (iPS) cells have generated keen interestdue to their potential use in regenerative medicine. They havebeen obtained from various cell types of both mice and humans byexogenous delivery of different combinations of Oct4, Sox2, Klf4,c-Myc, Nanog, and Lin28. The delivery of these transcription factorshas mostly entailed the use of integrating viral vectors (retrovirusesor lentiviruses), carrying the risk of both insertional mutagenesisand oncogenesis due to misexpression of these exogenousfactors. Therefore, obtaining iPS cells that do not carry integratedtransgene sequences is an important prerequisite for their eventualtherapeutic use. Here we report the generation of iPS cell linesfrom mouse embryonic fibroblasts with no evidence of integrationof the reprogramming vector in their genome, achieved by nucleofectionof a polycistronic construct coexpressing Oct4, Sox2, Klf4,and c-Myc