953 resultados para Probability of detection
Resumo:
The production of conditional quantum states and quantum operations based on the result of measurement is now seen as a key tool in quantum information and metrology. We propose a different type of photon number detector. It functions nondeterministically, but when successful, it has high fidelity. The detector, which makes use of an n-photon auxiliary Fock state and high efficiency homodyne detection, allows a tunable trade-off between fidelity and probability. By sacrificing probability of operation, an excellent approximation to a photon-number detector is achieved.
Resumo:
One of the main arguments in favour of the adoption and convergence with the international accounting standards published by the IASB (i.e. IAS/IFRS) is that these will allow comparability of financial reporting across countries. However, because these standards use verbal probability expressions (v.g. “probable”) when establishing the recognition and disclosure criteria for accounting elements, they require professional accountants to interpret and classify the probability of an outcome or event taking into account those terms and expressions and to best decide in terms of financial reporting. This paper reports part of a research we carried out on the interpretation of “in context” verbal probability expressions used in the IAS/IFRS by the auditors registered with the Portuguese Securities Market Commission, the Comissão do Mercado de Valores Mobiliários (CMVM). Our results provide support for the hypothesis that culture affects the CMVM registered auditors’ interpretation of verbal probability expressions through its influence on the accounting value (or attitude) of conservatism. Our results also suggest that there are significant differences in their interpretation of the term “probable”, which is consistent with literature in general. Since “probable” is the most frequent verbal probability expression used in the IAS/IFRS, this may have a negative impact on financial statements comparability.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
Bacterial food poisoning is an ever-present threat that can be prevented with proper care and handling of food products. A disposable electrochemical immunosensor for the simultaneous measurements of common food pathogenic bacteria namely Escherichia coli O157:H7 (E. coli), campylobacter and salmonella were developed. The immunosensor was fabricated by immobilizing the mixture of anti-E. coli, anticampylobacter and anti-salmonella antibodies with a ratio of 1:1:1 on the surface of the multiwall carbon nanotube-polyallylamine modified screen printed electrode (MWCNT-PAH/SPE). Bacteria suspension became attached to the immobilized antibodies when the immunosensor was incubated in liquid samples. The sandwich immunoassay was performed with three antibodies conjugated with specific nanocrystal ( -E. coli-CdS, -campylobacter-PbS and -salmonella-CuS) which has releasable metal ions for electrochemical measurements. The square wave anodic stripping voltammetry (SWASV) was employed to measure released metal ions from bound antibody nanocrystal conjugates. The calibration curves for three selected bacteria were found in the range of 1 × 103 – 5 × 105 cells mL−1 with the limit of detection (LOD) 400 cells mL−1 for salmonella, 400 cells mL−1 for campylobacter and 800 cells mL−1 for E. coli. The precision and sensitivity of this method show the feasibility of multiplexed determination of bacteria in milk samples.
Resumo:
Purpose - The study evaluates the pre- and post-training lesion localisation ability of a group of novice observers. Parallels are drawn with the performance of inexperienced radiographers taking part in preliminary clinical evaluation (PCE) and ‘red-dot’ systems, operating within radiography practice. Materials and methods - Thirty-four novice observers searched 92 images for simulated lesions. Pre-training and post-training evaluations were completed following the free-response the receiver operating characteristic (FROC) method. Training consisted of observer performance methodology, the characteristics of the simulated lesions and information on lesion frequency. Jackknife alternative FROC (JAFROC) and highest rating inferred ROC analyses were performed to evaluate performance difference on lesion-based and case-based decisions. The significance level of the test was set at 0.05 to control the probability of Type I error. Results - JAFROC analysis (F(3,33) = 26.34, p < 0.0001) and highest-rating inferred ROC analysis (F(3,33) = 10.65, p = 0.0026) revealed a statistically significant difference in lesion detection performance. The JAFROC figure-of-merit was 0.563 (95% CI 0.512,0.614) pre-training and 0.677 (95% CI 0.639,0.715) post-training. Highest rating inferred ROC figure-of-merit was 0.728 (95% CI 0.701,0.755) pre-training and 0.772 (95% CI 0.750,0.793) post-training. Conclusions - This study has demonstrated that novice observer performance can improve significantly. This study design may have relevance in the assessment of inexperienced radiographers taking part in PCE or commenting scheme for trauma.
Resumo:
The Quinone outside Inhibitors (QoI) are one of the most important and recent fungicide groups used in viticulture and also allowed by Integrated Pest Management. Azoxystrobin, kresoxim-methyl and trifloxystrobin are the main active ingredients for treating downy and powdery mildews that can be present in grapes and wines. In this paper, a method is reported for the analysis of these three QoI-fungicides in grapes and wine. After liquid–liquid extraction and a clean-up on commercial silica cartridges, analysis was by isocratic HPLC with diode array detection (DAD) with a run time of 13 min. Confirmation was by solid-phase micro-extraction (SPME), followed by GC/MS determination. The main validation parameters for the three compounds in grapes and wine were a limit of detection up to 0.073mg kg-1, a precision not exceeding 10.0% and an average recovery of 93% ±38.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) protocol for the detection of Salmonella in artificially contaminated chicken meat. Tests were performed with different dilutions of Salmonella Typhimurium or Salmonella Enteritidis cells (10-7, 10-8 or 10-9 CFU/mL) inoculated in chicken meat samples, in order to establish the limits of detection, incubation times (0, 6, 8 and 24 hours of pre-enrichment in PBW 1%) and three DNA extraction protocols (phenol-chloroform, thermal treatment and thermal treatment and Sephaglass). The assay was able to detect until 10-9 CFU/mL of initial dilution of Salmonella cells inoculated in chicken meat, which allows detection of Salmonella within 48 hours, including 24 hours of pre-enrichment and using the phenol-chloroform DNA extraction protocol. As the results are obtained in a shorter time period than that of microbiological culture, this procedure will be useful in the methodology for detection of Salmonella in chicken.
Resumo:
This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.
Resumo:
A gold nanoparticle-coated screen-printed carbon electrode was used as the transducer in the development of an electrochemical immunosensor for Ara h 1 (a major peanut allergen) detection in food samples. Gold nanoparticles (average diameter=32 nm) were electrochemically generated on the surface of screen-printed carbon electrodes. Two monoclonal antibodies were used in a sandwich-type immunoassay and the antibody–antigen interaction was electrochemically detected through stripping analysis of enzymatically (using alkaline phosphatase) deposited silver. The total time of the optimized immunoassay was 3 h 50 min. The developed immunosensor allowed the quantification of Ara h 1 between 12.6 and 2000 ng/ml, with a limit of detection of 3.8 ng/ml, and provided precise (RSD <8.7%) and accurate (recovery >96.6%) results. The immunosensor was successfully applied to the analysis of complex food matrices (cookies and chocolate), being able to detect Ara h 1 in samples containing 0.1% of peanut.
Resumo:
Potentiometric detection with homemade polymeric membrane microelectrodes was coupled to a magnetic sandwich immunoassay for Salmonella typhimurium determination. Cadmium and sodium ion selective electrodes were used respectively as indicator and pseudo-reference electrodes and were prepared in pipette tips to allow potentiometric measurements in microliter sample volumes. In the proposed method, the concentration of S. typhimurium was proportional to the amount of cadmium released upon dissolution of a CdS nanoparticle labeled to the secondary detection antibody. The limit of detection was 2 cells per 100 μL. The immunomagnetic assay with potentiometric detection is suitable for sensitive and rapid (average total time per assay of 75 minutes) detection of S. typhimurium in milk samples. The proposed method is easy to perform, safe, sensitive, and low cost and has potential for in situ analysis.
Resumo:
The present work evaluated the diagnostic accuracy of detection of Dengue NS1 antigen employing two NS1 assays, an immunochromatographic assay and ELISA, in the diagnostic routine of Public Health laboratories. The results obtained with NS1 assay were compared with virus isolation and, in a subpopulation of cases, they were compared with the IgM-ELISA results obtained with convalescent samples. A total of 2,321 sera samples were analyzed by one of two NS1 techniques from March to October 2009. The samples were divided into five groups: groups I, II and III included samples tested by NS1 and virus isolation, and groups IV and V included patients with a first sample tested by NS1 and a second sample tested by IgM-ELISA. Sensitivity, specificity, positive and negative predictive values, Kappa Index and Kappa Concordance were calculated. The results showed that NS1 testing in groups I, II and III had high sensitivity (98.0%, 99.5% and 99.3%), and predictive values and Kappa index between 0.9 - 1.0. Groups IV and V only had Kappa Concordance calculated, since the samples were analyzed according to the presence of NS1 antigen or IgM antibody. Concordance of 92.1% was observed when comparing the results of NS1-negative samples with IgM-ELISA. Based on the findings, it is possible to suggest that the tests for NS1 detection may be important tools for monitoring the introduction and spread of Dengue serotypes.
Resumo:
The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in mussel cells, and induction of enzymes involved in detoxification of oxygen radicals. A qualitative histopathological screening revealed gonadotoxicity in female mussels, which may present some risk to population equilibrium.