929 resultados para Pre-tensioning Structural Design
Resumo:
The need to integrate cost into the early product definition process as an engineering parameter is addressed. The application studied is a fuselage panel that is typical for commercial transport regional jets. Consequently, a semi-empirical numerical analysis using reference data was coupled to model the structural integrity of thin-walled structures with regard to material failure and buckling: skin, stringer, flexural, and interrivet. The optimization process focuses on direct operating cost (DOC) as a function of acquisition cost and fuel burn. It was found that the ratio of acquisition cost to fuel burn was typically 4:3 and that there was a 10% improvement in the DOC for the minimal DOC condition over the minimal weight condition because of the manufacturing cost saving from having a reduced number of larger-area stringers and a slightly thicker skin than that preferred by the minimal weight condition. Also note that the minimal manufacturing cost condition was slightly better than the minimal weight condition, which highlights the key finding: The traditional minimal weight condition is a dated and suboptimal approach to airframe structural design.
Resumo:
In the early 19th century the requirement for clear span industrial buildings brought about the development of a variety of timber truss types. The Belfast truss was introduced circa 1860 to meet the demand for efficient wide span industrial buildings. It has essentially a bow-string configuration with a curved top chord, straight horizontal bottom chord and close-spaced lattice web. Several thousand still exist in Ireland, many in buildings of historic significance. This paper sets out to demonstrate the efficiency of the Belfast truss and to show that, by modern structural design criteria, the concept, member sizes and joint details were well chosen. Trusses in historic buildings can be replicated almost exactly as originally fabricated. Results of a theoretical study are compared with the experimental behaviour of two full-scale trusses: one a replacement truss, tested in the laboratory; the other an 80-year-old truss tested on site. In addition, experimental results from a manufacturers archive material of full-scale truss tests carried out about 100 years ago are compared with theoretical models. As well as considering their significance in building conservation the paper proposes that Belfast trusses are an attractive sustainable alternative to other roof structures. The analysis, design, fabrication and testing of trusses have resulted in a better understanding of their behaviour which is not only of historic interest and fundamental to the repair/restoration of existing trusses, but also relevant to the design of modern timber trusses and the promotion of a sustainable form of roof construction.
Resumo:
This review covers the structural design and versatile use of maleimide spacers in the preparation of bioconjugates of the anthracyclines doxorubicin and daunorubicin. It underpins the research conducted in our group on the preparation of conjugates of daunorubicin and transferrin.
Resumo:
The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.
This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.
Resumo:
Representing a new category of polymer-drug conjugates, brush polymer-drug conjugates were prepared by ring-opening metathesis copolymerization. Following judicious structural design, these conjugates exhibited well-shielded drug moieties, significant water solubility, well-defined nanostructures, and acid-triggered drug release.
Resumo:
This paper presents the preliminary results of geological and geomechanical studies on the laterite stone exploited at Dano quarry in Burkina Faso. The field work described the geological structure of quarry sites and their environment to determine the rocks alteration and the links between the bedrock and lateritic material. Physic-mechanical properties have been studied for assessing the potentiality of this material for lightweight housing, to be completed with thermal and environmental considerations. Some social and economic evaluations are in progress in order to foster its utilization under local conditions.
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.
Resumo:
A novel numerical technique is proposed to model thermal plasma of microseconds/milliseconds time-scale effect. Modelling thermal plasma due to lightning strike will allow the estimation of electric current density, plasma pressure, and heat flux at the surface of the aircraft structure. These input data can then be used for better estimation of the mechanical/thermal induced damage on the aircraft structures for better protection systems design. Thermal plasma generated during laser cutting, electric (laser) welding and other plasma processing techniques have been the focus of many researchers. Thermal plasma is a gaseous state that consists from a mixture of electrons, ions, and natural particles. Thermal plasma can be assumed to be in local thermodynamic equilibrium, which means the electrons and the heavy species have equal temperature. Different numerical techniques have been developed using a coupled Navier Stokes – Heat transfer – Electromagnetic equations based on the assumption that the thermal plasma is a single laminar gas flow. These previous efforts focused on generating thermal plasma of time-scale in the range of seconds. Lighting strike on aircraft structures generates thermal plasma of time-scale of milliseconds/microseconds, which makes the previous physics used not applicable. The difficulty comes from the Navier-Stokes equations as the fluid is simulated under shock load, this introducing significant changes in the density and temperature of the fluid.
Resumo:
In collaboration with Airbus-UK, the dimensional growth of small panels while being riveted with stiffeners is investigated. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using low and high fidelity nonlinear finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using high fidelity explicit finite element models. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.
Resumo:
This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.