933 resultados para Phase-behavior
Resumo:
The effect of amorphous (am-), monoclinic (m-), and tetragonal (t-) ZrO2 phase on the physicochemical and catalytic properties of supported Cu catalysts for ethanol conversion was studied. The electronic parameters of Cu/ZrO2 were determined by in situ XAS, and the surface properties of Cu/ZrO2 were defined by XPS and DRIFTS of CO-adsorbed. The results demonstrated that the kind of ZrO2 phase plays a key role in the determination of structure and catalytic properties of Cu/ZrO 2 catalysts predetermined by the interface at Cu/ZrO2. The electron transfer between support and Cu surface, caused by the oxygen vacancies at m-ZrO2 and am-ZrO2, is responsible for the active sites for acetaldehyde and ethyl acetate formation. The highest selectivity to ethyl acetate for Cu/m-ZrO2 catalyst up to 513 K was caused by the optimal ratio of Cu0/Cu+ species and the high density of basic sites (O2-) associated with the oxygen mobility from the bulk m-ZrO2. © 2013 Elsevier Inc. All rights reserved.
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compoundwere studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compoundwere obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out inopened and closed a-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves showthat this compound possesses exothermic transition phase between 170-180 ºC, which it is irreversible(monotropic reaction). The kinetics study of this transition phase stage was evaluated by DSC undernon-isothermal conditions. The obtained data were evaluated with the isoconversional method, where thevalues of activation energy (Ea/kJmol-1) was plotted in function of the conversion degree (a). The resultsshow that due to mass sample, different activation energies were obtained. From these curves a tendencycan be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
[EN]Isobaric vapor–liquid equilibria at p = 101.32 kPa (iso-p VLE) and the mixing properties, hE and vE, are determined for a set of twelve binary solutions: HCOOCuH2u+1(1)+CnH2n+2(2) with u = (1–4) and n = (7– 9). The (iso-p VLE) present deviations from the ideal behavior, which augment as u diminishes and n increases. Systems with [u = 2,3 n = 7] and [u =4 , n = 7,8] present a minimum-boiling azeotrope. The nonideality is also reflected in high endothermic values, hE > 0, and expansive effects, vE > 0, for all the binaries, which increase regularly with n
Resumo:
To assess the pattern of early bacterial colonization at implants and teeth in patients with a history of chronic periodontitis compared with a group of healthy subjects. Furthermore, the presence of host-derived markers at teeth and implants in the two subject groups was determined.
Resumo:
Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.
Resumo:
Centromere proteins are localized within the centromere-kinetochore complex, which can be proven by means of immunofluorescence microscopy and immunoelectron microscopy. In consequence, their putative functions seem to be related exclusively to mitosis, namely to the interaction of the chromosomal kinetochores with spindle microtubules. However, electron microscopy using immune sera enriched with specific antibodies against human centromere protein C (CENP-C) showed that it occurs not only in mitosis but during the whole cell cycle. Therefore, we investigated the cell cycle-specific expression of CENP-C systematically on protein and mRNA levels applying HeLa cells synchronized in all cell cycle phases. Immunoblotting confirmed protein expression during the whole cell cycle and revealed an increase of CENP-C from the S phase through the G2 phase and mitosis to highest abundance in the G1 phase. Since this was rather surprising, we verified it by quantifying phase-specific mRNA levels of CENP-C, paralleled by the amplification of suitable internal standards, using the polymerase chain reaction. The results were in excellent agreement with abundant protein amounts and confirmed the cyclic behavior of CENP-C during the cell cycle. In consequence, we postulate that in addition to its role in mitosis, CENP-C has a further role in the G1 phase that may be related to cell cycle control.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
"A technical account of this study appears as part 2 of a report entitled 'Motive patterns of managers and specialists!'"
Resumo:
Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.
Resumo:
A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical synchronization transition. We find a richness of solutions when the coupling increases, which exists only within a solvability region (SR). We also find that the solutions possess different characteristics, depending on the section of the boundary of the SR where they appear. We study the birth of these solutions and how they evolve when the coupling strength increases, and determine the diagram of solutions in phase space.
Resumo:
We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.
Resumo:
Transport properties and magnetization measurements of the K(x)MoO(2-delta) (0 <= x <= 0.25) compound are reported. The compound crystallizes in the oxygen deficient MoO(2) monoclinic structure with potassium atoms occupying interstitial positions. An unconventional metallic behavior with power-law temperature dependence is related to a magnetic ordering. Superconducting transition with small volume fraction is also observed near 7 K for a sample with low potassium composition.