933 resultados para Phase Synthesis
Resumo:
The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200-600 degrees C temperature range, its cubic phase of 2-3 nm size. prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 degrees C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction. transmission electron microscopy, and UV-visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 degrees C annealed samples, under ultraviolet light excitation.
Resumo:
Cubic cuprates (a not, vert, similar 18.6 Å) with a BaCuO2-type structure were obtained in the Ba-Pb-Cu-O and Ba-Bi-Cu-O systems by the reaction of the component oxides at a high temperature (1370-1420 K), followed by quenching. By annealing these phases in oxygen at 1070-1120 K, perovskite-like phase (a not, vert, similar 4.3 Å) of the formulae BaPb1-xCuxO3-y and BaBi1-xCuxO3-y (0 < x ? 0.5) were obtained. A perovskite of nominal composition BaPb0.25Tl0.25 Cu0.5O3-y, prepared by a similar procedure, was found to be superconducting with a Tc of not, vert, similar 70 K.
Resumo:
The compounds YBa2−xLaxCu3Oy, with compositions (0
Resumo:
The present study provides an electrodeposition based synthesis method for producing solid solution structured Ag-Ni nanoparticles. It was also observed that the room temperature stable solid solution configuration for the electrodeposited Ag-Ni nanoparticle was a kinetically frozen atomic arrangement and not a thermodynamically stable structure as upon annealing of the Ag-Ni nanoparticles in the ambient atmosphere the solid solution structure decomposed producing phases that were oxides of Ag and Ni. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.esl120008] All rights reserved.
Resumo:
We report the synthesis of trigonal and tetragonal phase GeO2 films/microrods from a Ge wafer/powder by thermal oxidation. Both trigonal and tetragonal GeO2 exhibit excitation-dependent luminescence. Trigonal GeO2 exhibits strong green luminescence while tetragonal GeO2 exhibits strong blue luminescence when excited with ultra-violet light. Yellow-red luminescence is observed when both the phases are excited with green light. The emission wavelength varies almost linearly with the excitation wavelength both for trigonal and tetragonal GeO2. The variation is significant in the case of tetragonal GeO2, indicating a potential wavelength converter material.
Resumo:
Oxygen-deficient defect perovskite La4BaCu5O13+d phase has been synthesized by the nitrate-citrate gel combustion method at 950 C for 2 h. Structural parameters were refined by the Rietveld refinement method using room-temperature powder XRD data. The La4BaCu5O13+d crystallizes in the tetragonal structure with space group P4/m (no. 83) and having the lattice parameters a=8.6508 c=3.8606 (1) Å and (2) Å, respectively. Oxygen content was determined by the iodometric titration. Low-temperature resistivity result reveals that La4BaCu5O13+d compound exhibit metallic behavior up to 15 K.
Resumo:
The paper reports the synthesis of Nb/Si multilayers (48/27 nm) deposited on Si single crystal substrate by sequential laser ablation of elemental Nb and Si. Significant amount of Nb is found in the amorphous Si layer (similar to 25-35 at.% Nb). The Nb layer is found to be polycrystalline. The phase evolution of the multilayer has been studied by annealing at 600 degrees C for various times and carrying out cross sectional electron microscopic studies. We report the formation of amorphous silicide layer at the Nb/Si interface followed by the formation of the NbSi2 phase in the Si layer. Further annealing leads to the nucleation of hexagonal Nb5Si3 grains in amorphous silicide layers at Nb/NbSi2 interfaces. These results are different from those reported for sputter deposited multilayer. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
The two-phase Brust-Schiffrin method (BSM) is used to synthesize highly stable nanoparticles of noble metals. A phase transfer catalyst (PTC) is used to bring in aqueous phase soluble precursors into the organic phase to enable particle synthesis there. Two different mechanisms for phase transfer are advanced in the literature. The first mechanism considers PTC to bring in an aqueous phase soluble precursor by complexing with it. The second mechanism considers the ionic species to be contained in inverse micelles of PTC, with a water core inside. A comprehensive experimental study involving measurement of interfacial tension, viscosity, water content by Karl-Fischer titration, static light scattering, H-1 NMR, and small-angle X-ray scattering is reported in this work to establish that the phase transfer catalyst tetraoctylammonium bromide transfers ions by complexing with them, instead of encapsulating them in inverse micelles. The findings have implications for particle synthesis in two-phase methods such as BSM and their modification to produce more monodispersed particles.
Resumo:
Feature-based vocoders, e.g., STRAIGHT, offer a way to manipulate the perceived characteristics of the speech signal in speech transformation and synthesis. For the harmonic model, which provide excellent perceived quality, features for the amplitude parameters already exist (e.g., Line Spectral Frequencies (LSF), Mel-Frequency Cepstral Coefficients (MFCC)). However, because of the wrapping of the phase parameters, phase features are more difficult to design. To randomize the phase of the harmonic model during synthesis, a voicing feature is commonly used, which distinguishes voiced and unvoiced segments. However, voice production allows smooth transitions between voiced/unvoiced states which makes voicing segmentation sometimes tricky to estimate. In this article, two-phase features are suggested to represent the phase of the harmonic model in a uniform way, without voicing decision. The synthesis quality of the resulting vocoder has been evaluated, using subjective listening tests, in the context of resynthesis, pitch scaling, and Hidden Markov Model (HMM)-based synthesis. The experiments show that the suggested signal model is comparable to STRAIGHT or even better in some scenarios. They also reveal some limitations of the harmonic framework itself in the case of high fundamental frequencies.
Resumo:
Large-scale synthesis of high-quality GaN nano-crystallites has been achieved by direct reaction of a 4:1 molar Ga/Ga2O3 mixture with ammonia at 950degreesC. X-ray diffraction, transmission electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy revealed that the produced GaN nanocrystallites were single hexagonal wurtzite structure with an average particle size around 45 nm. A sharp near band edge emission peak and a blue light emission peak were observed in photoluminescence spectroscopy. The synthesis approach is simple and easy to be commercialized.